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Cardiac arrhythmias

Sudden cardiac death:
~300,000 deaths/year

Ventricular tachycardia
- Rapid activation
- May impair pumping
- May degenerate to VF

Ventricular fibrillation
- Loss of synchronous 
  activation
- Syncope, death



• How do cardiac arrhythmias initiate?

• How are they sustained?

• What can we do to prevent their occurrence?

• How can we terminate them?



Finally, we induced EADs in rabbit ventricular myocytes
by a third method, exposure to hypokalemia (2.7 mM).
Fig. 3 shows the recordings of APs (left) and APD histo-
grams (right) at different PCLs. The AP behavior was

similar to that shown in our previous study (5) and in
Fig. 2 A, except that as the PCL decreased, instead of a single
EAD on each AP (as typical for H2O2 and BayK8644),
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FIGURE 1 Irregular EAD behaviors observed in isolated rabbit ventric-
ular myocytes exposed to H2O2. APD histograms for different PCLs from
a patch-clamped rabbit ventricular myocyte exposed to 1 mM H2O2. The
experimental data were taken from our previous study (5). The dashed
vertical line marks the border of APs with or without EADs (also shown
in APD histograms in subsequent figures).
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FIGURE 2 Irregular EAD behaviors observed in
isolated rabbit ventricular myocytes exposed to
BayK8644. Voltage traces (A) and APD histograms
(B) for different PCLs from a rabbit ventricular
myocyte exposed to 50 nM BayK8644.
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FIGURE 3 Irregular EAD behaviors observed in isolated rabbit ventric-
ular myocytes exposed to hypokalemia. AP traces (left) and APD
histograms (right) are shown for different PCLs from a rabbit ventricular
myocyte exposed to hypokalemia ([K]o ¼ 2.7 mM).
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Initiation

Abnormal cellular electrical activity

Structural heterogeneity
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Fig. 1.2 A typical action potential duration
(APD) restitution curve, generated with the
Shiferaw et al. model [54] of a ventricular
cell. To generate the APD restitution curve,
a train of action potentials are stimulated at
a constant pacing rate, followed by one pre-
mature stimulus. Thus, the diastolic interval

(DI) following the penultimate action poten-
tial is varied, and the duration of the resulting
action potential is plotted as a function of the
preceding DI. As the action potentials in the
insets demonstrate, APD shortens as DI is
shortened, leading to a restitution curve with
the general shape as shown.
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Fig. 1.3 Action potential duration bifurcation
diagram, generated with the Shiferaw et al.
model [54] in a one-dimensional cable. When
pacing at a relatively slow rate, identical ac-
tion potentials occur each time a stimulus is

applied (i.e., 1:1 behavior). However, increas-
ing the pacing rate causes the action potential
behavior to bifurcate, such that for every two
stimuli, two different action potentials occur
(i.e., 2:2 behavior).

given cell bifurcates to alternans is dependent upon the membrane currents
and intracellular regulatory mechanisms operating in that cell.

Our interest in alternans resides in the role of alternans as a precursor, or
even as a trigger event, for more complex and potentially fatal cardiac ar-
rhythmias. The details of the implications of APD alternans for ventricular
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Cardiac arrhythmia mechanisms

thevirtualheart.org

Ventricular 
tachycardia

Ventricular 
fibrillation Defibrillation



single channel

Multiscale phenomena

1 nm 10 nm 100 nm 1 !m 10 !m 100 !m 1 mm 1 cm 10 cm1 !

10 !s 100 !s 1 ms 10 ms 100 ms 1 s 10 s 100 s

single cell tissue, organ

2 Introduction

1.1 Membrane noise

1.1.1 Single-channel noise

With the development of the patch-clamp technique it became possible to measure

the current flow across tiny patches of membrane, clamped at a fixed transmembrane

potential (91). An example is shown below.

i2
i
0

1 
pA
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Figure 1.1: Single-channel current through mutant cystic fibrosis transmem-

brane conductance regulator (CFTR) channels. Channel openings are downward

deflections. Courtesy of John. W. Hanrahan. For more examples of single-

channel recordings see e.g. Ref. 60.

The current varies in a step-like manner between three different levels: 0, i,

and 2i. The interpretation is that the patch contains two identical ionic channels,

each of which can be either closed or open. Ions can diffuse through an open channel

with a fixed conductance (the single-channel conductance), but cannot go through

the channel when it is in its closed configuration. Thus, when both channels in

the patch are closed, no current is conducted (level 0), when one channel is open a

single-channel current i is conducted, and when both channels are open the current

is 2i.

The average time that a channel spends in a given state generally depends

8

Figure 5. APs from a broad range of simple and complex mathematical models
of cardiac cells (see [47], for a review of current cell models).

mouse ventricular [63], human atrial [64, 65], and canine atrial [66], as well as sinoatrial node
cells [48]. For convenience, we focus on the three-variable model described in [38] and its four-
variable extension [57] to analyze many of the phenomena presented here. Examples of a wide
range of model action potentials are shown in figure 5. APs have different shapes because of
the presence of different currents and variations in current densities in different species and
regions of the heart. Figure 6 shows two examples of Java applets [67] that depict the APs and
other variables of two different ionic models and also permit an interactive visualization of the
transmembrane currents.

2.2.3. Numerical integration. Integrating the above equations numerically can be challenging
because of the differences in time and space scales. As can be seen in figures 3–5, the
timescale of the AP upstroke is much smaller (about two orders of magnitude) than the
timescale of repolarization, and simulations may need to include tens of APs. Similarly, the
size of a computational cell is about two orders of magnitude smaller than the necessary
domain size. The difference in timescales has given rise to several advanced integration
techniques [38], [68]–[70]. However, because it is important to reproduce conduction velocities

New Journal of Physics 10 (2008) 125016 (http://www.njp.org/)



Cardiac action potentials

Ca2+ K+

Na+
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Transmembrane 
potential:
If ionic 
distribution 
neutral, 
V = ? mV.



Cardiac action potentials

Transmembrane 
potential:
If ionic 
distribution 
neutral, 
V = 0 mV.
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Cardiac action potentials

Cardiac cells 
rest at 
V " #85 mV 
with some K 
channels 
open.

EK = ln " #85 mV
RT
zF

[K+]o
[K+]i

Na+

K+

Ca2+

Ca2+Na+

K+

INa ICa IK

Nernst potential (equilibrium 
potential for electrodiffusion):



Cardiac action potentials

Injection of a 
stimulus current 
initiates 
depolarization, 
which cause Na+ 
and Ca+ 
channels to 
open and further 
depolarize the 
membrane, 
V " +20 mV

(ENa " +50 mV, ECa " +30 mV)
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Cardiac action potentials

Na+ and Ca+ 
channels 
inactivate 
(close) with 
prolonged 
depolarization. 
K+ channels 
open and 
cause 
repolarization 
to V " #85 mV.

Na+

K+

Ca2+

Ca2+Na+
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Cardiac action potentials

• Upstroke of ventricular AP 

is Na+ mediated.

• A prolonged inward Ca2+ 

current prolongs the AP 

(plateau).

• Ca2+ influx triggers 

additional Ca2+ release 

from the sarcoplasmic 

reticulum.

• Cytoplasmic Ca2+ produces 

muscle contraction.

• Cardiac cells have many 

different types of K+ 

channels.
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The membrane as an electrical circuit

Equation for capacitor:        Q = Cm V

Current across capacitor:    Ic = dQ  /dt = Cm dV /dt

Charge conservation:          I = Ic + Iion = 0

Hence, dV /dt = #Iion / Cm, where Iion = INa + IK + ICa

g g g
CaNa K

Cm
E E ENa K Ca

V

Inside

Outside



Examples of currents with 
voltage-gated conductances:

m, h, j, d, f, n 
represents the fraction 
of gates that are open
(“gating variables”)
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 IK = gK n (V ! EK)
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ODE for gating variable:

where

"x(V)

x 1! x
#x(V)

x: fraction of gates that are open
1! x: fraction of gates that are closed
#x(V): opening rate
"x(V): closing rate

dx /dt = #x (1! x) ! "x x
          = ! (#x + "x) x + #x 
          = (x$ ! x) /%x

 x$ = #x / (#x + "x)
  %x = 1 / (#x + "x)



Solution for constant V:

dx /dt = (x$ ! x) /%x

1 / (x$ ! x) dx = 1 /%x dt

$  1 / (x$ ! x’) dx’ = $  1 /%x dt’
x0

x

0

t

[ # ln (x$ ! x’) ]   = t  /%xx0

x

x$ ! x
x$ ! x0

 = exp( # t  /%x)

x = x$ ! (x$ ! x0) exp( # t  /%x)

ln              = # t  /%x
x$ ! x
x$ ! x0



Solution for constant V:

x = x$ ! (x$ ! x0) exp( # t  /%x)

Voltage clamp experiments:

inactivation
activation

x$



The Hodgkin-Huxley model of the squid giant axon
88 Guevara

Stellate nerve with giant axon

Stellate ganglion

Figure 4.1. Anatomical location of the giant axon of the squid. Drawing by Tom
Inoué.

4.2.2 Measurement of the Transmembrane Potential

The large diameter of the axon (as large as 1000 µm) makes it possible to
insert an axial electrode directly into the axon (Figure 4.2A). By placing
another electrode in the fluid in the bath outside of the axon (Figure 4.2B),
the voltage difference across the axonal membrane (the transmembrane
potential or transmembrane voltage) can be measured. One can also
stimulate the axon to fire by injecting a current pulse with another set of
extracellular electrodes (Figure 4.2B), producing an action potential that
will propagate down the axon. This action potential can then be recorded
with the intracellular electrode (Figure 4.2C). Note the afterhyperpolar-
ization following the action potential. One can even roll the cytoplasm out
of the axon, cannulate the axon, and replace the cytoplasm with fluid of
a known composition (Figure 4.3). When the fluid has an ionic composi-
tion close enough to that of the cytoplasm, the action potential resembles
that recorded in the intact axon (Figure 4.2D). The cannulated, internally
perfused axon is the basic preparation that allowed electrophysiologists to
sort out the ionic basis of the action potential fifty years ago.

The advantage of the large size of the invertebrate axon is appreciated
when one contrasts it with a mammalian neuron from the central nervous
system (Figure 4.4). These neurons have axons that are very small; indeed,
the soma of the neuron in Figure 4.4, which is much larger than the axon,
is only on the order of 10 µm in diameter.

4.3 Basic Electrophysiology

4.3.1 Ionic Basis of the Action Potential

Figure 4.5 shows an action potential in the Hodgkin–Huxley model of the
squid axon. This is a four-dimensional system of ordinary differential equa-

The axon is giant, 
not the squid
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Figure 4.2. (A) Giant axon of the squid with internal electrode. Panel A from
Hodgkin and Keynes (1956). (B) Axon with intracellularly placed electrode,
ground electrode, and pair of stimulus electrodes. Panel B from Hille (2001).
(C) Action potential recorded from intact axon. Panel C from Baker, Hodgkin,
and Shaw (1961). (D) Action potential recorded from perfused axon. Panel D
from Baker, Hodgkin, and Shaw (1961). Rubber-coveredrollerAxoplasmRubber pad
Figure 4.3. Cannulated, perfused giant axon of the squid. From Nicholls, Martin,
Wallace, and Fuchs (2001).

tions that describes the three main currents underlying the action potential
in the squid axon. Figure 4.5 also shows the time course of the conductance
of the two major currents during the action potential. The fast inward
sodium current (INa) is the current responsible for generating the upstroke
of the action potential, while the potassium current (IK) repolarizes the
membrane. The leakage current (IL), which is not shown in Figure 4.5, is
much smaller than the two other currents. One should be aware that other
neurons can have many more currents than the three used in the classic
Hodgkin–Huxley description.

4.3.2 Single-Channel Recording

The two major currents mentioned above (INa and IK) are currents that
pass across the cellular membrane through two different types of channels

Action potential recordings from squid giant axon



Full Hodgkin-Huxley model
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Figure 4.17. Time course of m, m3, h, and m3h in the Hodgkin–Huxley model.

ordinary differential equations,

dV

dt
= − 1

C
[(ḡNam

3h(V − ENa) + ḡKn4(V − EK)

+ ḡL(V − EL) + Istim],
dm

dt
= αm(1 − m) − βmm, (4.25)

dh

dt
= αh(1 − h) − βhh,

dn

dt
= αn(1 − n) − βnn,

where

ḡNa = 120 mS cm−2, ḡK = 36 mS cm−2, ḡL = 0.3 mS cm−2,

and

ENa = +55 mV, EK = −72 mV, EL = −49.387 mV, C = 1 µF cm−2.

Here Istim is the total stimulus current, which might be a periodic pulse
train or a constant (“bias”) current. The voltage-dependent rate constants

104 Guevara

are given by

αm = 0.1(V + 35)/(1− exp(−(V + 35)/10)),
βm = 4 exp(−(V + 60)/18),
αh = 0.07 exp(−(V + 60)/20), (4.26)
βh = 1/(exp(−(V + 30)/10) + 1),
αn = 0.01(V + 50)/(1− exp(−(V + 50)/10)),
βn = 0.125 exp(−(V + 60)/80).

Note that these equations are not the same as in the original papers of
Hodgkin and Huxley, since the modern-day convention of the inside of
the membrane being negative to the outside of membrane during rest is
used above, and the voltage is the actual transmembrane potential, not its
deviation from the resting potential.

Figure 4.18 shows m, h, and n during the action potential. It is clear
that INa activates more quickly than IK, which is a consequence of τm

being smaller than τn (see Figures 4.13B and 4.16B).

4.5.6 The FitzHugh–Nagumo Equations

The full Hodgkin–Huxley equations are a four-dimensional system of ordi-
nary differential equations. It is thus difficult to obtain a visual picture of
trajectories in this system. In the 1940s, Bonhoeffer, who had been conduct-
ing experiments on the passivated iron wire analogue of nerve conduction,
realized that one could think of basic electrophysiological properties such
as excitability, refractoriness, accommodation, and automaticity in terms
of a simple two-dimensional system that had a phase portrait very simi-
lar to the van der Pol oscillator (see, e.g., Figures 8 and 9 in Bonhoeffer
1948). Later, FitzHugh wrote down a modified form of the van der Pol
equations to approximate Bonhoeffer’s system, calling these equations the
Bonhoeffer–van der Pol equations (FitzHugh 1961). FitzHugh also realized
that in the Hodgkin–Huxley equations, the variables V and m tracked each
other during an action potential, so that one could be expressed as an al-
gebraic function of the other (this also holds true for h and n). At about
the same time as this work of FitzHugh, Nagumo et al. were working on
electronic analogues of nerve transmission, and came up with essentially
the same equations. These equations thus tend to be currently known as
the FitzHugh–Nagumo equations and are given by

dx

dt
= c

(
x − x3

3
+ y + S(t)

)
,

dy

dt
= − (x − a + by)

c
, (4.27)

where x is a variable (replacing variables V and m in the Hodgkin–Huxley
system) representing transmembrane potential and excitability, while y is
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Noble, 
J Physiol, 1962.

COMPUTED CARDIAC ACTION POTENTIALS

conductance. The individual ionic conductances are defined by the
equations

9Na = INa/(Em ENa) (1)

9 = IK/(Em EK), (2)

where gNa and 9E are the sodium and potassium conductances respectively
in mmho/cm2,
INa and IK are the ionic currents in ,uA/cm2,
ENa and EK are the equilibrium potentials in mV
and Em is the membrane potential in mV expressed as the inside potential
minus the outside potential.

In addition, a leak conductance was assumed which may be attributed,
at least in part, to chloride ions. It will be convenient in this paper to refer
to this as the anion conductance, 7An

9An = IA/(EmEAn), (3)

where IAn is the anion current and EAn the anion equilibrium potential.
Various values for YAn will be inserted in order to reproduce the effects of
anions of different permeabilities.

In Hodgkin & Huxley's equations the membrane potential (V) is measured with respect
to a 'zero' at the resting potential and has a sign such that the action potential is a negative
variation in V. The convention adopted here is different and conforms to that usually
adopted in experimental work with intracellular electrodes. The potential (Em) is the potential
of the inside with respect to the outside, the resting potential is a negative quantity and the

action potential is a positive variation. Positive currents are therefore outward and not

inward as in Hodgkin & Huxley's equations. In comparing the equations in this paper with

those of Hodgkin & Huxley the substitution Em = Er- V should be made, where Er is the

resting potential of squid nerve (about -55 mV).

The total membrane current (Im) is given by the sum of the ionic
currents and the current flowing into the membrane capacity

Im = Cm dt +INa+IK + IAn' (4)

where Cm is the membrane capacity and t is time in msec. Cm will be taken
to be 12pF/cm2 (Weidmann, 1952; Coraboeuf & Weidmann, 1954) which
is 12 times larger than in squid nerve. If an action potential is initiated
at all points along a fibre simultaneously, the membrane potential at each
instant will be uniform. The axial current will therefore be zero, so that,
in the absence of applied currents, the total membrane current will also
be zero. This type of response was called a 'membrane' action potential
by Hodgkin & Huxley and is given by equation (4) with Im = 0. In these
circumstances all the net ionic current is used in changing the charge on the
local membrane capacity, so that the rate of change of potential, dEm/dt,

21-2
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COMPUTED CARDIAC ACTION POTENTIALS

measured in sodium-deficient solutions is carried by potassium. So far as
the action potential mechanism is concerned this assumption wili not
matter greatly, since, over a large range of potentials, the potassium and
chloride currents flow in the same direction. It does, however, mean that
the potential dependent changes in gK given by the equations described
below are likely to be rather smaller than the true changes.
For the purpose of describing the potassium current mathematically, it

is convenient to suppose that K ions may move through two types of
channel in the membrane. In one the potassium conductance (gql) is
assumed to be an instantaneous function of the membrane potential and
falls when the membrane is depolarized. In the other type of channel the
conductance (gK,) slowly rises when the membrane is depolarized. These
channels are represented in the circuit diagram (Fig. 1) by two parallel
rectifiers, both of which are in series with the potassium battery. g], is
represented by a rectifier which passes inward current easily, while gg, is
represented by a rectifier which passes outward current easily. A purely
empirical equation will be used to describe gK,

yK, = 1-2 exp [(-Em-90)/50] + 0-015 exp [(Em + 90)/60]. (5)

Hutter & Noble's experiments do not provide any evidence for the assumption that gK is
an instantaneous function of Em, because the discharging of the membrane capacity took so
long (Cm is large and, when the membrane is depolarized, rm is also large) that it was not
possible to determine the changes occurring in g9 during the first 25-50 msec of the pulses,
but it seemed to be the simplest assumption to make in the absence of information obtained
under voltage-clamp conditions. It will be shown later, when the computed action potentials
are compared with experimental records, that this assumption may well be wrong and that
there may be a small delay in the changes in gjw1 following changes in Em.

The conductance of the other type of channel (g92) will be described by
Hodgkin & Huxley's potassium current equations (Hodgkin & Huxley,
1952d, equations (6), (7), (12) and (13)), with two main modifications. First,
the value of gK2 (the maximum value of gE,) will be made much smaller
than in nerve in order that the increase in qK, produced by depolarization
should not offset the decrease in gq. Secondly, the rate constants will be
divided by 100 in order to take account ofthe very much slower onset ofthis
effect in Purkinje fibres (Hutter & Noble, 1960). With these modifications
the equations become

gKE = 1-2n4, (6)

dn =Ocn(I_ n)- nn, (7)

0 0001(-Em-50)
n= exp [(-Em-50)/10]-1 (8)

n= 0-002exp[(-Em-90)/80]. (9)
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is proportional to the net ionic current. In the present paper onlymembrane
action potentials will be described and in comparing the results with
experimental records of propagated action potentials it is assumed that
the axial current, which must be very small during the slow phases of the
action potential, may be neglected.
The equivalent electrical circuit assumed for the Purkinje fibre mem-

brane is shown in Fig. 1. The only qualitative difference between this and
the circuit for squid nerve (Hodgkin & Huxley, 1952d) is that the potassium
current is assumed to flow through two non-linear resistances. The reason
for making this assumption is explained below.

Outside

1gNa gKi 9K2 | l

C Em

IC INaT ENa 'KI EK IAn1 EAn -

Inside
Fig. 1. Equivalent electrical circuit for Purkinje fibre membrane.

Explanation in text.

The potassium current
The equations which will be used to describe the potassium current are

based on Hutter & Noble's (1960) measurements of the current-voltage
relations of Purkinje fibres in sodium-deficient solutions. In contrast to
the situation in squid nerve, depolarization was found to decrease the
membrane conductance (Hutter & Noble, 1960; Carmeliet, 1961). A small
and slowly developed increase in conductance occurs when large de-
polarizing currents are used (Hutter & Noble, 1960) but this effect is not
large enough for the conductance of the depolarized membrane to exceed
the resting conductance.
The chloride conductance of normal resting cardiac muscle is very small

(Carmeliet, 1961; Hutter & Noble, 1961) so that the fall in conductance
on depolarization must be mainly, if not entirely, attributed to a fall in
g9. For the present purpose it will be assumed that all the current
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The absolute values of the conductances have been adjusted to give a
resting conductance (slope conductance at Em = -90 mV) of about
1 mmho/cm2 (Coraboeuf & Weidmann, 1954). The potassium equilibrium
potential will be set at - 100 mV so that the total potassium current is
given by

IK = (91+Y9K2)(EM+ 100). (10)

50 Instantaneous

pA/cm2

150 100 50 50 150

Out , - /

u ~~~~-504
IInI

-150-
Fig. 2. Current-voltage relations described by K equations. Ordinate, membrane
potential (mV); abscissa, K current in (uA/cm2). Interrupted curves show current-
voltage relations in the two types ofK channel, as described in text. The continuous
curve shows total steady-state current. The shape of this curve resembles that
recorded experimentally, and over the voltage range of the action potential fits the
curve obtained by Hutter & Noble (1960) reasonably closely when the experimental
curve is corrected for the cable properties of the fibre, as described by Cole &
Curtis (1941).

The current-voltage relations described by equations (5)-(10) are shown
in Fig. 2. The interrupted curve labelled 'instantaneous' shows the
current flowing in the first type of channel. The interrupted curve labelled
'delayed' shows the steady-state current flowing in the second type of
channel, given by g9, (Em + 100), where gE is the value of gE, at a given
potential after the potential has been held at this value for a long time.
dn/dt is then zero and equations (6) and (7) give

gE = 1V2[cx/(oct+n)]4. (11)

The continuous curve shows the sum of the currents in the two channels.
The constants in the equations have been chosen so that this curve should
reproduce that recorded experimentally. Over the range of potentials
covered by the action potential the shape of the curve is a reasonable fit
with that recorded by Hutter & Noble (1960) after correction for the cable
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-90 mV to -20 mV is shown. gE initially falls and then slowly rises during
the period of depolarization (note the change in time scale after 10 msec).
Whenthepotential is suddenlyreturnedto -90mV, 9E rises above its resting
value, towards which it then slowly falls. Some experimental evidence for
this slow fall in YE after depolarization has been obtained (Hutter & Noble,
unpublished; Noble, 1961).

The sodium current

In squid nerve changes in the membrane potential have a dual effect
on the sodium conductance (Hodgkin & Huxley, 1952c). When the mem-
brane is suddenly depolarized there is initially a very large increase in

9Na) but, even if the depolarization is maintained, gNa soon falls again to
a low value. Moreover, the magnitude of the initial increase in YNa depends
on the previous value of the membrane potential. Hodgkin & Huxley
described this behaviour by supposing that gNa is determined by two
variables, m and h, which vary with the membrane potential in opposite
directions and with different time constants

YNa = m3hgNa, (12)
where gNa is a constant and m and h obey the equations:

dt= cm(l-m)-Pmm, (13)
dh

dh= Ch(l-h)-Phh (14)

where xm' Pm' ah and Ph are functions of Em.
The dependence of h on Em describes the relation between the initial

membrane potential and the maximum sodium current which may be
produced by depolarization of the membrane. Using a modification of the
voltage-clamp technique and using the maximum rate of depolarization
as a measure of the sodium current, Weidmann (1955) showed that in
Purkinje fibres this relation is very similar to that in squid nerve, except
that the curve is shifted along the voltage axis by about 20 mV. His
method did not allow accurate measurements of ach and Ph but he did show
that these are of the same order of magnitude and vary with Em in the
same way as in squid nerve. Thus the only modifications required in the
equations for h is that the functions for cLh and Ph should be shifted along
the voltage axis so as to make the relation between Em and the steady-
state value of h,

ho> = (Xh/(CXh +Ph) (15)

coincide with Weidmann's experimental curve. This was done by ad-
justing the constants determining the position of the curve until the
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potential at which h. = 0*5 became about -71 mV (Weidmann, 1955).
The equations for Xh and h obtained in this way are:

° Ch = 0 17 exp [(-Em-90)/20], (16)

Ph = [expQ ljO )+1if* (17)

This procedure leaves the shape of the h,o4Em relation unaltered. In fact,
Weidmann's curve for Purkinje fibres is slightly steeper than that for squid
nerve, but, as he has pointed out, it is very likely that this is only due to
differences in experimental technique.
In the voltage-clamp technique used by Weidmann, when the sodium

conductance is greatly increased on depolarization of the membrane it is
not possible to retain control of the membrane potential owing to the
limitation on the amount of current which may be passed through a
micro-electrode. He was therefore unable to obtain information on which
to base equations for m. However, in view of the close similarity of the
processes determining h in Purkinje fibres and in squid nerve, it seems
reasonable to assume that the processes determining m are also similar.
The choice of constants in the m equations must at present be a somewhat
arbitrary procedure and the method used will be described in detail below
(see Methods). The equations obtained are:

= exp [(-Em-48)/15] - I (18)

gm
= 0- 12(Em + 8) (19)
=exp[(Em+8)/5]-J (19

In arriving at these equations it was assumed that a small component
(0 14 mmho/cm2) of 9Na is independent of Em and t. gNa was set at
400 mmho/cm2 and ENa at 40 mV. When these values are inserted into
equation (1) INa is given by

INa = (400m3h + 0 14)(Em-40). (20)
The behaviour of these equations is of course very similar to that of

Hodgkin & Huxley's (Hodgkin & Huxley, 1952d; Huxley, 1959 a). It is,
however, worth illustrating in order to note the changes which occur when
a long-lasting depolarization is applied. This is shown in Fig. 3 (continuous
curve). When Em is suddenly changed from -90 to -20 mV it can be seen
that, following the large transient increase in gNa, there is a small main-
tained increase which persists throughout the period of the depolarization.
The steady-state Na current therefore increases in spite of the decrease in
the Na electrochemical potential gradient. This property allows the
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Luo & Rudy, 
Circ Res, 1991.

Luo and Rudy A Model of the Ventricular Cardiac Action Potential 1503

TABLE 1. Fonnulations of Ionic Currents

Inward currents

Fast sodium current

INa=23 * m3* h. j * (V-ENa)
For V>-40 mV

ah=aj=0.0, 13h=l/(0.13{1+exp[(V+ 10.66)/-11.1J})

,6j=0.3 * exp(-2.535* 10-7 V)/{1+exp[-0.1(V+32)]}
For V<-40 mV

ah=0.135 *exp[(80+V)/-6.8], /h=3.56 exp(0.079V)+3.1 105 exp(0.35V)

aj=[-1.2714* 105' exp(0.2444V)-3.474 10`5 exp(-0.04391V)] (V+37.78)/{1+exp[0.311 * (V+79.23)]}

Pj =0.1212* exp(-0.01052V)/{1 +exp[-0.1378(V+40.14)J}
For all range of V

am=0.32(V+47.13)/{1-exp[-0.1(V+47.13)]}, 1l3m=0.08 exp(-V/11)
Slow inward current

I,=0.09 d f(V-EBi), E,i=7.7-13.0287 1n([Ca]i)
ced=0.095* exp[-0.01(V-5)]/{1+exp[-0.072(V-5)]}

1d=0.07* exp[-0.017(V+44)]/{1+exp[0.05(V+44)]}
af=0.012* exp[-0.008(V+28)]/{1 +exp[0.15(V+28)J}
,Bf=0.0065 exp[-0.02(V+30)]/{1 +exp[-0.2(V+30)]}
Calcium uptake: d([CaJi)/dt= - 10-4 I±+0.07(10-4_ [Ca]i)

Outward currents

Time-dependent potassium current

IK=GK X * Xi * (V-EK), UK=0-.282 *jKJJ5.4
Xj=2.837* {exp[O.04(V+77)]-1}/{(V+77) * exp[0.04(V+35)]} for V> -100 mV and Xj=1 for V<-100 mV

ax=0.0005* exp[0.083(V+50)]/{1+exp[0.057(V+50)]}

13x=0.0013 exp[-0.06(V+20)]/{1+exp[-0.04(V+20)J}
Time-independent potassium current

IK1=GK1 K1. * (V-EKI), GK1=0.6047 V[K]J5.4
aK, = 1.02/{1 + exp[0.2385 * (V-EK1-59.215)]}
,S3K1={0.49124 exp[0.08032* (V-EK1+5.476)I+exp[0.06175 (V-EK1-594.31)]}/

{1 +exp[-0.5143* (V-EKl+4.753)I}
Plateau potassium current

IKP=0-0183 * Kp * (V-EKp), EKp=EK
Kp= /{1 + exp[(7.488-V)/5.98]}

Background current

1b=0.03921 (V+59.87)

Total time-independent potassium current

IK1(T)=K1 + IKp+ Ib

IK, time-dependent potassium current (/uA/cm'); IK, fully activated potassium current (/LA/cm') (IK=IK/X); IK1,
time-independent potassium current (pA/cm'); 1Kp, plateau potassium current (gA/cm'); 'b, background leakage
current (gA/cm'); IK1(T), total time-independent potassium current (gA/cm') (IK1(T)=IK1+IKP+Ib); INa, fast sodium
current (gA/cm'); ILj, slow inward current (giA/cm'); V, membrane potential (mV); V, time derivative of V (V/sec);
Vnax, maximum rate of rise of V (V/sec); Ei, reversal potential of ion i (mV); G,, maximum conductance of channel i
(mS/cm2); [A]0, [A],, extracellular and intracellular concentrations of ion A, respectively (mM); m, h, j, activation gate,
fast inactivation gate, and slow inactivation gate of INa; d, f, activation gate and inactivation gate of 1,j; X, Xi, activation
gate and inactivation gate of IK; Kl, inactivation gate of IKI; Y0, steady-state value of activation (inactivation) gate y; ay,
fly, opening and closing rate constants of gate y (msec-1); ry, time constant of gate y (msec).

state values of j (ja) are obtained by setting jmha,
where ha is from the E-J model. The time constant of
j (t) is set equal to the rj of the B-R model. The rate
constants ac and ,B1 are obtained by using the param-
eter estimation procedure mentioned above.21 The
sodium current is

INa=GNa* m3 h j (V-ENa) (3)

where GNa is the maximum conductance of the so-
dium channel (23 mS/cm2)425; ENa is the reversal

potential of sodium [ENa=(RT/F) iIn ([Na]0/[Na]l)];
and m, h, and j are obtained as solutions to Equation
2 with the appropriate rate constants. Note that ENa
computed with the E-J model is 29 mV since
[Na]i=40 mM in chicken embryo heart cells.25 In our
model we set ENa=54.4 mV based on [Na]i=18 mM
in mammalian ventricular cells.13'23

IA: Slow inward current. Representation of I1i is the
same as in the B-R model. The formulation is
provided in Table 1.
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Cell model evolution: Iyer et al. 2004

For fine tuning of the optimal parameter set, the output of the annealing

algorithm is fed into a Neldar-Mead simplex search algorithm (in which only

downhill moves are accepted). This approach has been shown to be superior

in finding the absolute minimum of functions of several variables (Goffe,
1994).

Model equations and parameters

All rate constants are expressed in units of ms!1 unless otherwise noted.

Similarly, all concentrations are expressed in mM unless otherwise noted.

Constants

See Tables 1–4.

Membrane currents

See Table 5.

Sodium current INa

INa ¼ !GGNaðO1Na 1O2NaÞðV ! ENaÞ: (1)

ENa ¼
RT

F
ln

½Na1&o
½Na1&i

! "
: (2)

dC0Na

dt
¼ !ð4a1 cnÞðC0NaÞ1 ðbÞðC1NaÞ1 ðcfÞðCI0NaÞ: (3)

dC1Na

dt
¼! ðb1 cn ' a1 3aÞðC1NaÞ1 ð4aÞðC0NaÞ

1 ð2bÞðC2NaÞ1 ðcf=aÞðCI1NaÞ: (4)

dC2Na

dt
¼! ð2b1 cn ' a2 1 2aÞðC2NaÞ1 ð3aÞðC1NaÞ

1 ð3bÞðC3NaÞ1 ðcf=a2ÞðCI2NaÞ: (5)

dC3Na

dt
¼! ð3b1 cn ' a3 1aÞðC3NaÞ1 ð2aÞðC2NaÞ

1 ð4bÞðC4NaÞ1 ðcf=a3ÞðCI3NaÞ: (6)

dC4Na

dt
¼! ð4b1 cn ' a4 1 g1hÞðC4NaÞ

1 ðaÞðC3NaÞ1 ðdÞðO1NaÞ1 ðnÞðO2NaÞ
1 ðcf=a4ÞðCI4NaÞ: (7)

dO1Na

dt
¼! ðd1 e1 onÞðO1NaÞ1 ðgÞðC4NaÞ

1 ðvÞðO2NaÞ1 ðofÞðINaÞ: (8)

dO2Na

dt
¼ !ðv1 nÞðO2NaÞ1 ðeÞðO1NaÞ1 ðhÞðC4NaÞ: (9)

dCI0Na
dt

¼! ðcf 1 4aaÞðC3NaÞ1 ðb=aÞðCI1NaÞ

1 ðcnÞðC0NaÞ: (10)

dCI1Na
dt

¼! ðb=a1 3aa1 cf=aÞðCI1NaÞ1 ð4aaÞðCI0NaÞ

1 ð2b=aÞðCI2NaÞ1 ðcnaÞðC1NaÞ: (11)

dCI2Na
dt

¼! ð2b=a1 2aa1 cf=a
2ÞðCI2NaÞ1 ð3aaÞðCI1NaÞ

1 ð3b=aÞðCI3NaÞ1 ðcna2ÞðC2NaÞ: (12)

dCI3Na
dt

¼! ð3b=a1aa1 cf=a
3ÞðCI3NaÞ1 ð2aaÞðCI2NaÞ

1 ð4b=aÞðCI4NaÞ1 ðcna3ÞðC3NaÞ: (13)

dCI4Na
dt

¼! ð4b=a1 gg1 cf=a
4ÞðCI4NaÞ1 ðaaÞðCI3NaÞ

1 ðddÞðINaÞ1 ðcna4ÞðC4NaÞ: (14)

dINa
dt

¼ !ðdd1 ofÞðINaÞ1 ðggÞðCI4NaÞ1 ðonÞðO1NaÞ: (15)

See Table 6.

Rapidly-activating delayed rectifier K1

current IKr

IKr ¼ !GGKrf ð½K1&oÞðOKrÞðV ! EKÞ: (16)

EK ¼ RT

F
ln

½K1&o
½K1&i

! "
: (17)

f ð½K1&oÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½K1&o
4

! "s

: (18)

dC1Kr

dt
¼ !ða0ÞðC1KrÞ1 ðb0ÞðC2KrÞ: (19)

dC2Kr

dt
¼ !ðb0 1 kfÞðC2KrÞ1 ða0ÞðC1KrÞ1 ðkbÞðC3KrÞ: (20)

TABLE 1 Physical constants

Constant Symbol Value

Faraday’s constant F 96.5!C/mmol
Temperature T 310 K

Gas constant R 8.315 J/mol !K

Boltzmann’s constant K 1.381 E!23 J/K
Planck’s constant H 6.626 E!31 J/ms

TABLE 2 Cell geometry constants

Constant Symbol Value

Cell capacitance Acap 153.4 pF

Myoplasm volume Vmyo 25.84 E!6 mL
Junctional SR volume VJSR 0.16 E!6 mL
Network SR volume VNSR 2.1 E!6 mL
Subspace volume Vss 1.2 E!9 mL

TABLE 3 Standard ionic concentrations

Permeant ion Symbol Value

Sodium [Na1]o 138 mM
Potassium [K1]o 4 mM

Calcium [Ca21]o 2 mM
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TABLE 4 Initial conditions (pacing protocol)

State Symbol 0.25 Hz 1 Hz 2 Hz 3 Hz

Membrane potential, mV V !9.121 E101 !9.066 E101 !8.877 E101 !8.615 E101

Intracellular sodium, mM [Na1]i 8.006 E100 9.798 E100 1.347 E101 1.649 E101

Intracellular potassium, mM [K1]i 1.274 E102 1.256 E102 1.219 E102 1.188 E102

Intracellular calcium, mM [Ca21]i 4.414 E!05 8.601 E!05 2.447 E!04 4.781 E!04

NSR calcium, mM [Ca21]NSR 1.741 E!01 2.855 E!01 3.260 E!01 3.689 E!01

SS calcium, mM [Ca21]SS 4.803 E!05 1.420 E!04 3.386 E!04 6.320 E!04

JSR calcium, mM [Ca21]JSR 1.741 E!01 2.852 E!01 3.242 E!01 3.662 E!01

RyR state C1 PC1 9.366 E!01 4.448 E!01 2.207 E!01 1.345 E!01

RyR state O1 PO1 7.516 E!05 6.602 E!04 9.747 E!04 1.414 E!03

RyR state C2 PC2 6.337 E!02 5.545 E!01 7.783 E!01 8.641 E!01

RyR state O2 PO2 1.749 E!11 3.974 E!09 7.976 E!08 7.544 E!07

L-type state C0 C0L 9.861 E!01 8.622 E!01 6.745 E!01 6.122 E!01

L-type state C1 C1L 1.251 E!02 1.141 E!02 1.033 E!02 1.146 E!02

L-type state C2 C2L 5.955 E!05 5.666 E!05 5.933 E!05 8.050 E!05

L-type state C3 C3L 1.260 E!07 1.250 E!07 1.514 E!07 2.512 E!07

L-type state C4 C4L 9.990 E!11 1.034 E!10 1.450 E!10 2.940 E!10

L-type state O OL 7.493 E!12 7.758 E!12 1.088 E!11 2.209 E!11

L-type state Cca0 CCa0L 1.210 E!03 1.199 E!01 2.965 E!01 3.493 E!01

L-type state Cca1 CCa1L 6.140 E!05 6.347 E!03 1.816 E!02 2.616 E!02

L-type state Cca2 CCa2L 1.169 E!06 1.260 E!04 4.172 E!04 7.349 E!04

L-type state Cca3 CCa3L 9.889 E!09 1.112 E!06 4.260 E!06 9.175 E!06

L-type state Cca4 CCa4L 3.137 E!11 3.681 E!09 1.631 E!08 4.295 E!08

L-type inactivation variable y 9.997 E!01 9.997 E!01 9.996 E!01 9.993 E!01

High affinity troponin bound fraction HTRPNCa 9.359 E!01 9.772 E!01 9.912 E!01 9.948 E!01

Low affinity troponin bound fraction LTRPNCa 4.233 E!02 8.047 E!02 2.070 E!01 3.374 E!01

Kv4.3 state C1 C1Kvf 9.527 E!01 9.514 E!01 9.460 E!01 9.335 E!01

Kv4.3 state C2 C2Kvf 2.563 E!02 2.668 E!02 3.063 E!02 3.685 E!02

Kv4.3 state C3 C3Kvf 2.586 E!04 2.806 E!04 3.719 E!04 5.457 E!04

Kv4.3 state C4 C4Kvf 1.159 E!06 1.312 E!06 2.007 E!06 3.597 E!06

Kv4.3 state O OKvf 1.949 E!09 2.300 E!09 4.062 E!09 8.887 E!09

Kv4.3 state CI1 CI1Kvf 1.514 E!02 1.513 E!02 1.523 E!02 1.755 E!02

Kv4.3 state CI2 CI2Kvf 5.225 E!03 5.443 E!03 6.326 E!03 8.912 E!03

Kv4.3 state CI3 CI3Kvf 9.131 E!04 9.918 E!04 1.332 E!03 2.302 E!03

Kv4.3 state CI4 CI4Kvf 8.401 E!05 9.514 E!05 1.478 E!04 3.132 E!04

Kv4.3 state I OI1Kvf 2.323 E!06 2.743 E!06 4.918 E!06 1.271 E!05

Kv1.4 state C1 C1Kvs 7.630 E!01 5.977 E!01 3.411 E!01 2.189 E!01

Kv1.4 state C2 C2Kvs 2.108 E!01 1.731 E!01 1.162 E!01 9.330 E!02

Kv1.4 state C3 C3Kvs 2.184 E!02 1.881 E!02 1.488 E!02 1.497 E!02

Kv1.4 state C4 C4Kvs 1.006 E!03 9.161 E!04 8.710 E!04 1.105 E!03

Kv1.4 state O OKvs 1.737 E!05 1.976 E!05 2.946 E!05 4.912 E!05

Kv1.4 state CI1 CI1Kvs 6.505 E!04 3.539 E!02 5.392 E!02 3.209 E!02

Kv1.4 state CI2 CI2Kvs 9.517 E!05 5.429 E!03 9.733 E!03 7.252 E!03

Kv1.4 state CI3 CI3Kvs 3.820 E!04 2.288 E!02 4.847 E!02 4.543 E!02

Kv1.4 state CI4 CI4Kvs 5.143 E!04 3.234 E!02 8.089 E!02 9.521 E!02

Kv1.4 state I OI1Kvs 1.719 E!03 1.134 E!01 3.339 E!01 4.917 E!01

IKr state C1 C1Kr 9.967 E!01 9.967 E!01 9.966 E!01 9.965 E!01

IKr state C2 C2Kr 4.163 E!04 4.341 E!04 5.013 E!04 6.116 E!04

IKr state C3 C3Kr 7.321 E!05 7.634 E!05 8.827 E!05 1.089 E!04

IKr state O OKr 8.847 E!06 9.512 E!06 1.242 E!05 2.827 E!05

IKr state I IKr 1.387 E!06 1.533 E!06 2.207 E!06 5.805 E!06

IKs state C0 C0Ks 9.646 E!01 9.646 E!01 9.634 E!01 9.626 E!01

IKs state C1 C1Ks 3.543 E!02 3.543 E!02 3.546 E!02 3.547 E!02

IKs state O1 O1Ks 2.294 E!07 2.492 E!07 3.349 E!07 4.987 E!07

IKs state O2 O2Ks 4.680 E!11 1.299 E!05 1.164 E!03 1.894 E!03

INa state C0 C0Na 1.474 E!01 1.438 E!01 1.305 E!01 1.094 E!01

INa state C1 C1Na 4.051 E!02 4.178 E!02 4.597 E!02 5.020 E!02

INa state C2 C2Na 4.175 E!03 4.553 E!03 6.069 E!03 8.639 E!03

INa state C3 C3Na 1.913 E!04 2.205 E!04 3.562 E!04 6.607 E!04

INa state C4 C4Na 3.286 E!06 4.005 E!06 7.838 E!06 1.895 E!05

INa state O1 O1Na 1.196 E!08 1.574 E!08 4.002 E!08 1.378 E!07

INa state O2 O2Na 2.160 E!09 2.857 E!09 7.408 E!09 2.636 E!08

INa state CI0 CI0Na 4.869 E!01 4.750 E!01 4.314 E!01 3.619 E!01
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dOKr

dt
¼ "ðb1 1aiÞðOKrÞ1 ða1ÞðC3KrÞ1 ðbiÞðIKrÞ: (21)

dOKr

dt
¼ "ðb1 1aiÞðOKrÞ1 ða1ÞðC3KrÞ1 ðbiÞðIKrÞ: (22)

dIKr
dt

¼ "ðc1biÞðIKrÞ1 ðai3ÞðC3KrÞ1 ðaiÞðOKrÞ: (23)

c ¼ ðb1 % bi % ai3Þ
ða1 % aiÞ

: (24)

See Table 7.

Slowly-activating delayed rectifier K1 current IKs

IKs ¼ !GGKsðO1Ks 1O2KsÞðV " EKÞ: (25)

EK ¼ RT

F
ln

½K1'o
½K1'i

! "
: (26)

dC0Ks

dt
¼ "ðaÞðC0KsÞ1 ðbÞðC1KsÞ: (27)

dC1Ks

dt
¼ "ðb1 gÞðC1KsÞ1 ðaÞðC0KsÞ1 ðdÞðO1KsÞ: (28)

dO1Ks

dt
¼ "ðd1 eÞðO1KsÞ1 ðgÞðC1KsÞ1 ðvÞðO2KsÞ: (29)

dO2Ks

dt
¼ "ðvÞðO2KsÞ1 ðeÞðO1KsÞ: (30)

See Table 8.

Transient outward K1 current Ito1

Fast recovering component, Kv4.3

IKv4:3 ¼ !GGKv4:3ðOKvfÞðV " EKÞ: (31)

EK ¼ RT

F
ln

½K1'o
½K1'i

! "
: (32)

dC0Kvf

dt
¼ "ð4aa 1biÞðC0KvfÞ1 ðbaÞðC1KvfÞ1 ðaiÞðCI0KvfÞ:

(33)

dC1Kvf

dt
¼ "ðba 1 3aa 1 f1biÞðC1KvfÞ1 ð4aaÞðC0KvfÞ

1 ð2baÞðC2KvfÞ1 ðai=b1ÞðCI1KvfÞ: (34)

dC2Kvf

dt
¼ "ð2ba 1 2aa 1 f2biÞðC2KvfÞ1 ð3aaÞðC1KvfÞ

1 ð3baÞðC3KvfÞ1 ðai=b2ÞðCI2KvfÞ: (35)

dC3Kvf

dt
¼ "ð3ba 1aa 1 f3biÞðC3KvfÞ1 ð2aaÞðC2KvfÞ

1 ð4baÞðC4KvfÞ1 ðai=b3ÞðCI3KvfÞ: (36)

dOKvf

dt
¼ "ð4ba 1 f4biÞðOKvfÞ1 ðaaÞðC3KvfÞ

1 ðai=b4ÞðOIKvfÞ: (37)

dCI0Kvf
dt

¼ "ðb14aa 1 aiÞðCI0KvfÞ1 ðba=f1ÞðCI1KvfÞ

1 ðbiÞðC0KvfÞ: (38)

TABLE 4 Continued

State Symbol 0.25 Hz 1 Hz 2 Hz 3 Hz

INa state CI1 CI1Na 2.625 E"01 2.707 E"01 2.979 E"01 3.257 E"01

INa state CI2 CI2Na 5.306 E"02 5.786 E"02 7.715 E"02 1.099 E"01

INa state CI3 CI3Na 4.768 E"03 5.496 E"03 8.880 E"03 1.649 E"02

INa state CI4 CI4Na 1.606 E"04 1.958 E"04 3.833 E"04 9.297 E"04

INa state I INa 3.097 E"04 4.177 E"04 1.271 E"03 1.605 E"02

TABLE 5 Time-dependent current densities

Current Symbol Density

Sodium current GNa 56.32 mS/mF
Delayed rectifier, rapid component GKr 0.0186 mS/mF
Delayed rectifier, slow component GKs 0.0035 mS/mF
Transient outward current, fast recovery GKv4.3 0.0775 mS/mF
Transient outward current, slow recovery PKv1.4 4.161 d"8 cm/s

TABLE 6 INa rate constants

l ¼ Q
kT

h
exp

"DHl

RT
1

DSl
R

1
zlFV

RT

! "
parameters

Rate constant DH, J/mol DS, J/mol "K z

a 114,007 224.114 0.2864
b 272,470 708.146 "2.2853

g 196,337 529.952 2.7808

d 133,690 229.205 "1.5580
On 62,123 39.295 0.2888

Of 97,658 1.510 0.0685

gg "116,431 "578.317 0.7641

dd 55,701 "130.639 "3.6498
e 85,800 70.078 0

v 121,955 225.175 0

h 147,814 338.915 2.1360

n 121,322 193.265 "1.7429
Cn 287,913 786.217 0

Cf 59,565 0.00711 0

Scaling a 1.4004
Q 1.389
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dCI1Kvf
dt

¼ "ðba=f1 1 b23aa=b1 1ai=b1ÞðCI1KvfÞ

1 ðb14aaÞðCI0KvfÞ1 ðf12ba=f2ÞðCI2KvfÞ
1 ðf1biÞðC1KvfÞ: (39)

dCI2Kvf
dt

¼" ðf12ba=f2 1 b32aa=b2 1ai=b2ÞðCI2KvfÞ

1 ðb23aa=b1ÞðCI1KvfÞ1 ðf23ba=f3ÞðCI3KvfÞ
1 ðf2biÞðC2KvfÞ: (40)

dCI3Kvf
dt

¼" ðf23ba=f3 1 b4aa=b3 1ai=b3ÞðCI3KvfÞ

1 ðb32aa=b2ÞðCI2KvfÞ1 ðf34ba=f4ÞðOIKvfÞ
1 ðf3biÞðC3KvfÞ: (41)

dOIKvf
dt

¼" ðf34ba=f4 1ai=b4ÞðOIKvfÞ1 ðb4aa=b3Þ

3ðCI3KvfÞ1 ðf4biÞðOKvfÞ: (42)

Slowly recovering component, Kv1.4

IKv1:4 ¼ PKv1:4OKvs

4VF2

RT

½K1&iexp
VF

RT

! "
" ½K1&o

exp
VF

RT

! "
" 1

1 IKv1:4;Na:

(43)

IKv1:4;Na ¼ 0:02 ' PKv1:4OKvs

4VF2

RT

½Na1&iexp
VF

RT

! "
" ½Na1&o

exp
VF

RT

! "
" 1

:

(44)

dC0Kvs

dt
¼" ð4aa 1biÞðC0KvsÞ1 ðbaÞðC1KvsÞ

1 ðaiÞðCI0KvsÞ: (45)

dC1Kvs

dt
¼" ðba 1 3aa 1 f1biÞðC1KvsÞ1 ð4aaÞðC0KvsÞ

1 ð2baÞðC2KvsÞ1 ðai=b1ÞðCI1KvsÞ: (46)

dC2Kvs

dt
¼" ð2ba 1 2aa 1 f2biÞðC2KvsÞ

1 ð3aaÞðC1KvsÞ1 ð3baÞðC3KvsÞ1 ðai=b2ÞðCI2KvsÞ:
(47)

dC3Kvs

dt
¼" ð3ba 1aa 1 f3biÞðC3KvsÞ1 ð2aaÞðC2KvsÞ

1 ð4baÞðC4KvsÞ1 ðai=b3ÞðCI3KvsÞ: (48)

dOKvs

dt
¼" ð4ba 1 f4biÞðOKvsÞ1 ðaaÞðC3KvsÞ

1 ðai=b4ÞðOIKvsÞ: (49)

dCI0Kvs
dt

¼" ðb14aa 1 aiÞðCI0KvsÞ1 ðba=f1ÞðCI1KvsÞ

1 ðbiÞðC0KvsÞ: (50)

dCI1Kvs
dt

¼" ðba=f1 1 b23aa=b1 1ai=b1ÞðCI1KvsÞ

1 ðb14aaÞðCI0KvsÞ1 ðf12ba=f2ÞðCI2KvsÞ
1 ðf1biÞðC1KvsÞ: (51)

dCI2Kvs
dt

¼" ðf12ba=f2 1 b32aa=b2 1ai=b2ÞðCI2KvsÞ

1 ðb23aa=b1ÞðCI1KvsÞ1 ðf23ba=f3ÞðCI3KvsÞ
1 ðf2biÞðC2KvsÞ: (52)

dCI3Kvs
dt

¼" ðf23ba=f3 1 b4aa=b3 1ai=b3ÞðCI3KvsÞ

1 ðb32aa=b2ÞðCI2KvsÞ1 ðf34ba=f4ÞðOIKvsÞ
1 ðf3biÞðC3KvsÞ: (53)

dOIKvs
dt

¼" ðf34ba=f4 1ai=b4ÞðOIKvsÞ1 ðb4aa=b3ÞðCI3KvsÞ

1 ðf4biÞðOKvsÞ: (54)

See Table 9.

Time-independent K1 current IK1

IK1 ¼ !GGK1K
N
1 ðVÞ

ffiffiffiffiffiffiffiffiffiffiffi
½K1&o

q! "
ðV " EKÞ: (55)

TABLE 7 IKr rate constants

Rate constant Value

ao 0.0171 ' exp(0.0330 V) ms"1

bo 0.0397 ' exp("0.0431 V) ms"1

a1 0.0206 ' exp(0.0262 V) ms"1

b1 0.0013 ' exp("0.0269 V) ms"1

ai 0.1067 ' exp(0.0057 V) ms"1

bi 0.0065 ' exp("0.0454 V) ms"1

ai3 8.04 E"5 ' exp(6.98 E"7 V) ms"1

kf 0.0261 ms"1

kb 0.1483 ms"1

TABLE 8 IKs rate constants

Rate constant Value

a 7.956 E"3 ms"1

b 2.16 E"1 ' exp ("0.00002 V) ms"1

g 3.97 E"2 ms"1

d 7 E"3 ' exp("0.15 V) ms"1

e 7.67 E"3 ' exp(0.087 V) ms"1

v 3.80 E"3 ' exp("0.014 V) ms"1
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KN
1 ðVÞ ¼

1

0:941 exp
1:26

RT=F
ðV $ EKÞ

! " : (56)

EK ¼ RT

F
ln

½K1&o
½K1&i

! "
: (57)

!GGK1 ¼ 0:125
mS

mF ' mM1=2: (58)

Sodium handling mechanisms

NCX current INaCa

INaCa ¼ kNaCa
1

K3

m;Na 1 ½Na1&3o

1

Km;Ca 1 ½Ca21&o
1

11 ksate
ðh$1ÞVFRT

3 e
hVF
RT ½Na1&3i ½Ca

21&o $ e
ðh$1ÞVF

RT ½Na1&3o½Ca
21&i

# $
: (59)

Na1 background current INa,b

INa;b ¼ !GGNa;bðV $ ENaÞ: (60)

Na1-K1 pump current INaK

INaK ¼ kNaK fNaK
1

11 Km;Nai

½Na1 &i

# $1:5

½K1&o
½K1&o 1Km;Ko

: (61)

fNaK ¼ 1

11 0:1245e$0:1VFRT 1 0:0365se$1:33VFRT
: (62)

s ¼ 1

7
e
½Na1 &o
67:3 $ 1

! "
: (63)

See Table 10.

Calcium handling mechanisms

Sarcolemmal Ca21 pump current Ip(Ca)

IpðCaÞ ¼ !IIpðCaÞ
½Ca21&i

Km;pðCaÞ 1 ½Ca21&i
: (64)

Ca21 background current ICa,b

ICa;b ¼ !GGCa;bðV $ ECaÞ: (65)

ECa ¼
RT

2F
ln

½Ca21&o
½Ca21&i

! "
: (66)

See Table 11.

L-type Ca21 current ICa

a ¼ 1:997e0:012ðV$35Þ: (67)

b ¼ 0:0882e$0:065ðV$22Þ: (68)

a# ¼ aa: (69)

b# ¼ b

b
: (70)

g ¼ 0:0554½Ca21 &ss: (71)

dC0L

dt
¼ $ð4a1 gÞC0L 1bC1L 1vCCa0L: (72)

dC1L

dt
¼ $ð3a1b1 gaÞC1L 1 4aC0L 1 2bC2L 1

v

b
CCa1L:

(73)

dC2L

dt
¼ $ð2a1 2b1 ga2ÞC2L 1 3aC1L 1 3bC3L 1

v

b2CCa2L:

(74)

dC3L

dt
¼ $ða1 3b1 ga3ÞC3L 1 2aC2L 1 4bC4L 1

v

b3CCa3L:

(75)

dC4L

dt
¼ $ðf 1 4b1 ga4ÞC4L 1aC3L 1 gOL 1

v

b4CCa4L:

(76)

TABLE 9 Ito1 rate constants

Rate constant Kv4.3 current, ms$1 Kv1.4 current, ms$1

aa 0.675,425 ' exp(0.0255 V) 1.840024 ' exp(0.0077 V)

ba 0.088269 ' exp($0.0883 V) 0.010817 ' exp($0.0779 V)

ai 0.109566 0.003058
bi 3.03334 E$4 2.4936 E$6

f1 1.66120 0.52465

f2 22.2463 17.5188
f3 195.978 938.587

f4 181.609 54749.1

b1 0.72246 1.00947

b2 0.47656 1.17100
b3 7.77537 0.63902

b4 318.232 2.12035

TABLE 10 Sodium handling parameters

Parameter Value

GNa,b 0.001 mS/mF
Km,Na 87.5 mM

Km,Ca 1.38 mM
ksat 0.2

h 0.35

kNaK 2.387 mA/mF
Km,Nai 20 mM

Km,Ko 1.5 mM
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dOL

dt
¼ "gOL 1 fC4L: (77)

dCCa0L

dt
¼ "ð4a#1vÞCCa0L 1b#CCa1L 1 gC0L: (78)

dCCa1L

dt
¼" 3a#1b#1

v

b

! "
CCa1L 1 4a#CCa0L

1 2b#CCa2L 1 gaC1L: (79)

dCCa2L

dt
¼" 2a#1 2b#1

v

b2

# $
CCa2L 1 3a#CCa1L

1 3b#CCa3L 1 ga2C2L: (80)

dCCa3L

dt
¼" a#1 3b#1

v

b3

# $
CCa3L 1 2a#CCa2L

1 4b#CCa4L 1 ga3C3L: (81)

dCCa4L

dt
¼ " 4b#1

v

b4

# $
CCa4L 1a#CCa3L 1 ga4C4L: (82)

dyCa
dt

¼ yN " y

ty
: (83)

yN ¼ 0:82

11 e
V1 28:5

7:8
1 0:18: (84)

ty ¼
1

0:00653

0:51 e"V=7:1 1 0:00512e"V=39:8
(85)

!IICa ¼
!PPCa

Csc

4VF2

RT

0:001e2VF=RT " 0:341½Ca21&o
e2VF=RT " 1

: (86)

ICa ¼ !IICayOL (87)

ICa;K ¼ P#K
CSC

yOL

VF2

RT

½K1 &ie
VF
RT " ½K1&o

e
VF
RT " 1

 !

: (88)

P#K ¼
!PPK

11
!IICa

ICa;half

(89)

See Table 12.

RyR channel

dPC1

dt
¼ "k1a ½Ca

21&nssPC1 1 k"a PO1: (90)

dPO1

dt
¼k1

a ½Ca21 &nssPC1 " k"a PO1 " k1
b ½Ca21&mssPO1

1 k"b PO2 " k1
c PO1 1 k"c PC2: (91)

dPO2

dt
¼ k1

b ½Ca21&mssPO1 " k"b PO2: (92)

dPC2

dt
¼ k1

c PO1 " k"c PC2: (93)

Jrel ¼ v1ðPO1 1PO2Þð½Ca21&JSR " ½Ca21&SSÞ: (94)

SERCA2a pump

fb ¼
½Ca21&i
Kfb

# $Nfb

: (95)

rb ¼
½Ca21&NSR

Krb

# $Nrb

: (96)

Jup ¼ KSR

vmaxf fb " vmaxrrb
11 fb 1 rb

# $
: (97)

See Table 13.

Intracellular Ca21 fluxes

Jtr ¼
½Ca21&NSR " ½Ca21&JSR

ttr
: (98)

TABLE 11 Membrane calcium exchangers, background
current

Parameter Value

!IIpðCaÞ 0.05 pA/pF

Km,p(Ca) 0.0005 mM
!GGCa;b 7.684 d"5 ms/mF

TABLE 12 ICa parameters

Parameter Value

f 0.3 ms"1

g 4 ms"1

a 2
b 2

v 2.5 d"3 ms"1 mm"1

PCa 1.7283 d"3 cm/s
PK 3.2018 d"6 cm/s

ICa,half "0.265 pA/pF

TABLE 13 SR parameters

Parameter Value

K1
a 0.01215 mM"4 ms"1

K"
a 0.576 ms"1

K1
b 0.00405 mM"3 ms"1

K"
b 1.93 ms"1

K1
c 0.3 ms"1

K"
c 0.0009 ms"1

v1 1.8 ms"1

Kfb 0.000168 mM

Nfb 1.2
Krb 3.29 mM

Nrb 1

vmaxf 0.0748 d"3 mM/ms
vmaxr 0.03748 d"3 mM/ms

KSR 1.2
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Jxfer ¼
½Ca21#ss $ ½Ca21#i

txfer
: (99)

Jtrpn ¼
d½HTRPNCa#

dt
1

d½LTRPNCa#
dt

: (100)

d½HTRPNCa#
dt

¼ k1
htrpn½Ca

21#ið½HTRPN#tot
$ ½HTRPNCa#Þ $ k$htrpn½HTRPNCa#: (101)

d½LTRPNCa#
dt

¼ k1
ltrpn½Ca

21#ið½LTRPN#tot
$ ½LTRPNCa#Þ $ k$ltrpn½LTRPNCa#: (102)

See Table 14.

Intracellular ion concentrations and
membrane potential

d½Na1#i
dt

¼ $ðINa 1 INa;b 1 3INaCa 1 3INaK 1 IKv1:4;NaÞ
AcapCsc

VmyoF
:

(103)

d½K1#i
dt

¼$ ðIKr 1 IKs 1 IKv4:3 1 IKv1:4;K 1 IK1 1 ICa;K

$ 2INaK 1 IstimÞ
AcapCsc

VmyoF
: (104)

d½Ca21#i
dt

¼ bi

!
Jxfer $ Jup $ Jtrpn $ ðICa;b $ 2INaCa 1 IpðCaÞÞ

3
AcapCsc

2VmyoF

"
: (105)

bi ¼ 11
½CMDN#totK

CMDN

m

ðKCMDN

m 1 ½Ca21#iÞ
2 1

½EGTA#totK
EGTA

m

ðKEGTA

m 1 ½Ca21#iÞ
2

 !

:

(106)

bss ¼ 11
½CMDN#totK

CMDN

m

ðKCMDN

m 1 ½Ca21#ssÞ
2 1

½EGTA#totK
EGTA

m

ðKEGTA

m 1 ½Ca21#ssÞ
2

 !

:

(107)

bJSR ¼ 11
½CSQN#totK

CSQN

m

ðKCSQN

m 1 ½Ca21#JSRÞ
2

 !$1

: (108)

d½Ca21#ss
dt

¼ bss Jrel
VJSR

Vss

$ Jxfer
Vmyo

Vss

$ ðICaÞ
AcapCsc

2VssF

! "
: (109)

d½Ca21#JSR
dt

¼ bJSRðJtr $ JrelÞ: (110)

d½Ca21#NSR
dt

¼ Jup
Vmyo

VNSR

$ Jtr
VJSR

VNSR

: (111)

dV

dt
¼$ INa 1 ICa 1 ICa;K 1 IKr 1 IKs 1 IK1 1 INaCa 1 INaKð

1 IKv1:4 1 IKv4:3 1 IpðCaÞ 1 ICa;b 1 INa;b 1 Istim
#
: (112)

Istim ¼ $100 pA=pF: (113)
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Parameter Value

ttr 0.5747 ms

txfer 26.7 ms

HTRPNtot 140 d$3 mM
LTRPNtot 70 d$3 mM

K1
HTRPN 20 mM$1 ms$1

K$
HTRPN 0.066 d$3 ms$1

K1
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K$
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KCMDN
m 2.38 d$3 mM

KCSQN
m 0.8 mM

KEGTA
m 1.5 d$4 mM

EGTAtot 0 mM
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Markov model example: INa
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• May reproduce experimental data better than HH

• Integration time step usually small

• Many parameters

dO/dt = &BO ! 'O + µC1 ! (O + )IF ! *O
dBO/dt = …
!

INa = gNa(O+BO)(V!ENa)

13 ODEs 
(vs 4 for HH)

& '

µ

(

)
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single channel

Multiscale phenomena

1 nm 10 nm 100 nm 1 !m 10 !m 100 !m 1 mm 1 cm 10 cm1 !

10 !s 100 !s 1 ms 10 ms 100 ms 1 s 10 s 100 s

single cell tissue, organ

2 Introduction

1.1 Membrane noise

1.1.1 Single-channel noise

With the development of the patch-clamp technique it became possible to measure

the current flow across tiny patches of membrane, clamped at a fixed transmembrane

potential (91). An example is shown below.

i2
i
0

1 
pA

4 s

Figure 1.1: Single-channel current through mutant cystic fibrosis transmem-

brane conductance regulator (CFTR) channels. Channel openings are downward

deflections. Courtesy of John. W. Hanrahan. For more examples of single-

channel recordings see e.g. Ref. 60.

The current varies in a step-like manner between three different levels: 0, i,

and 2i. The interpretation is that the patch contains two identical ionic channels,

each of which can be either closed or open. Ions can diffuse through an open channel

with a fixed conductance (the single-channel conductance), but cannot go through

the channel when it is in its closed configuration. Thus, when both channels in

the patch are closed, no current is conducted (level 0), when one channel is open a

single-channel current i is conducted, and when both channels are open the current

is 2i.

The average time that a channel spends in a given state generally depends

8

Figure 5. APs from a broad range of simple and complex mathematical models
of cardiac cells (see [47], for a review of current cell models).

mouse ventricular [63], human atrial [64, 65], and canine atrial [66], as well as sinoatrial node
cells [48]. For convenience, we focus on the three-variable model described in [38] and its four-
variable extension [57] to analyze many of the phenomena presented here. Examples of a wide
range of model action potentials are shown in figure 5. APs have different shapes because of
the presence of different currents and variations in current densities in different species and
regions of the heart. Figure 6 shows two examples of Java applets [67] that depict the APs and
other variables of two different ionic models and also permit an interactive visualization of the
transmembrane currents.

2.2.3. Numerical integration. Integrating the above equations numerically can be challenging
because of the differences in time and space scales. As can be seen in figures 3–5, the
timescale of the AP upstroke is much smaller (about two orders of magnitude) than the
timescale of repolarization, and simulations may need to include tens of APs. Similarly, the
size of a computational cell is about two orders of magnitude smaller than the necessary
domain size. The difference in timescales has given rise to several advanced integration
techniques [38], [68]–[70]. However, because it is important to reproduce conduction velocities

New Journal of Physics 10 (2008) 125016 (http://www.njp.org/)



Three-dimensional virtual cardiac tissue

Virtual cells coupled by Ohmic resistances (gap junctions)



Why use computational modeling for cardiac 
electrophysiology?

• Rodent cardiac myocytes have fundamentally different 
channel expression levels (especially repolarizing 
currents). Therefore, transgenic models are not always 
appropriate.

• Modeling allows one to monitor each component 
simultaneously – not possible in experiments.

• Dynamics can be observed at resolutions that are 
unattainable experimentally or clinically.

• It is often faster and cheaper to do so.

Nerbonne. 
Trends Cardiovasc. Med. 
2004.

Human Murine



Cardiac ionic model surge

• Surge in development 
of cell models

• 66 in total (at CellML)

• Different species, 
regions, pathologies

• Multiple models for 
the same species/
region/condition

2005-2009

2000-2004

1995-1999

1990-1994

1980’s

1970’s1960’s



Kurata et al. (2002) AJP 283, H2074-2101.

Five different rabbit SAN models

Different models, different action potential shapes and duration 



Four different human ventricular cell models

Simulated epicardial APs for the different

ionic models.Experimental epicardial AP.

(M. Näbauer et al.,

Circulation 1996).

AP shapes are different

(qualitatively and

quantitatively).

Minimal

Cherry, KITP seminar 2006



Why do different models of the same species and 
regions disagree?

• Some models are simply better than others:

! Uses better data

! Uses more data from particular species/region

• The models are equally good/bad:

! Differences reflect electrophysiological heterogeneity

! Differences reflect different age, sex, etc.



488 S. A. Niederer and others Exp Physiol 94.5 pp 486–495

not included in the database, as follows: (1) experimental
or modelling studies that motivated model structure
but not the parameter values; (2) referenced studies that
were not obtainable, specifically symposium/conference
proceedings published over 20 years ago; and (3) in some
cases, experimental data sets are published in multiple
studies. In cases where a component is dependent on
multiple studies, where one study contained only a subset
of data that was published in a second larger study only
the larger study was included in the experimental data
dependency database. In the event of experiments being
performed at multiple temperatures within one paper and
when it was not specified which data set was used to
determine model parameters, the higher temperature was
taken. Specific cases where experimental data were not
included in the experimental data dependency database,
as it describes the model structure, are the stochiometry
of sodium potassium pump (I NaK) and sodium calcium
exchanger (I NaCa). Similarly, although the ten Tuesscher
cell model uses Hodgkin-and-Huxley-style gating kinetics
models, this represents the structure of the model and so
papers that motivated these equations are not included in
the experimental data dependency database.

Images of model connectivity are displayed as directed a
cyclical graphs using the freely available vizgraph package
(www.graphviz.org), using the dot language to describe
the graphs. Perl scripts were used to probe the citation tree
database and generate the dot files with nodal attributes
conditional on the experimental data classifications.

Figure 1. Phylogenetic schematic for the ten Tusscher et al. (2004; A) and the Iyer et al. (2004; B) cell
models (B), showing the links between modelling (trapeziums) and experimental studies (ellipses)
Modelling studies are broken up into components (boxes), with connections (arrows) between components and
published studies. ∗ Luo & Rudy (1994) model; and + Jafri et al. (1998) model.

Models were described using CellML (Lloyd et al. 2004)
and solved within the COR (Garny et al. 2003) modelling
environment using the CVODE adaptive integrator with
a relative tolerance of 10−7, an absolute tolerance of 10−9

and a maximal step size of 1 ms. All simulations were
solved to steady state, achieved after 1000–3000 beats at
1 Hz pacing.

Results

Global analysis of cellular models

Figure 1A and B shows phylogenetic schematics for the
experimental data dependencies of the ten Tusscher et al.
(2004) and Iyer et al. (2004) cell models, respectively.
Figure 2 plots the distribution of data sources contained
within the two phylogenetic schematics to provide insight
into the distribution of available experimental data for the
two models. Figure 2A, B and C plots the temperature,
species and cell type distribution of the experimental
data used in each cell model. Both cell models are based
on ∼50% human and ∼25% guinea-pig data, with the
remaining ∼25% taken from a wide range of species.
Experimental data are commonly acquired at one of
two temperatures, room temperature (21–25◦C) or body
temperature (36–37◦C). This is true for both models, with
limited experimental data acquired below 10◦C. The use
of ventricle data is the norm in both models, with ∼60%

C© 2009 The Authors. Journal compilation C© 2009 The Physiological Society

) at Weill Cornell Medical Library on September 14, 2011ep.physoc.orgDownloaded from Exp Physiol (

Niederer et al., 
Exp Physiol, 2009.

Model component heritage



Other modeling considerations

• Models are validated for specific conditions. They may 
not be valid for your numerical experiments (fast rates, 
temperature, concentrations, drugs, age, sex).

• A model can give a “right” result for the wrong reason.

• The more complicated the model (more variables and 
parameters), the more realistically it may behave. 
However,

• the more complicated the model, the harder it is to pin-
point cause-and-effect relationships and the more 
components may be wrong.

• Math instead of mice vs. insights from math/physics

dx
dt

= f(x, t)



Beat-to-beat variability in cardiac action potentials

To further assess repolarization variability, we re-
peated this pacing protocol in 132 myocytes isolated
from 19 hearts. For each cell, 10 consecutive action
potentials were recorded after at least 2 min of pacing
at 0.5 Hz to measure APD90 and SD, and to calculate
CV. We found that increased SD accompanied increased
mean APD90 according to the following relationship:
SD 5 (0.012 mean APD90) 1 0.75, r 5 0.70. However,
CV changed little over this large sample size, yielding a
mean of 2.3 6 0.9% (Fig. 2). Because theseAPD90 values
were recorded from cells in which we used the dis-
rupted patch technique, we also performed experi-
ments on 29 additional myocytes in which nystatin
perforated patches were used to minimize intracellular
dialysis. There was no significant difference (P 5 0.429,
unpaired) between control and nystatin CV (2.4 6
0.9%; Fig. 2). This suggested that intracellular dialysis
could not account for the beat-to-beat variability we
observed.

There was no significant correlation in the relation-
ship ofCV toCm (r 5 0.25)where mean Cm 5 95 6 23 pF

and CV 5 1.8 6 0.7% (n 5 16, 3 hearts). Thus cell size
does not appear to affect APD variability, at least over
the range we examined.

It seems likely that beat-to-beat variability in APD
results from stochastic behavior of ion channels acti-
vated during repolarization. To gain insight concerning
the magnitude of the ionic current and charge displace-
ment required to induce APD variability, the analysis
shown in Fig. 3 was performed. Figure 3A shows the
longest and shortest action potentials recorded from a
train of 10 beats in one myocyte. Figure 3B shows the
net ionic current for these action potentials, deter-
mined numerically from I 5 2 Cm(dVm/dt). The differ-
ence between the two currents (trace d) included a
rising and falling phase. Because the rising phase
(shaded area) coincided with the current difference that

Fig. 1. A: action potentials recorded from 20 successive cycles in a
single guinea pig ventricularmyocyte showed beat-to-beat variability
in action potential duration at 90% repolaization (APD90). B: time
sequence forAPD90 in the cell from A. C: histogram ofAPD90 recorded
from 200 successive cycles from a different myocyte with Gaussian fit
to histogram data (solid line).

Fig. 2. Relationship between the coefficient of variation (CV) and
mean APD90. Action potentials were recorded with suction pipettes
using either the disrupted patch (open circles) or nystatin patch
(closed circles). Each point represents a different cell.

Fig. 3. A: action potentials with shortest and longest APD90 from a
train of 10 successive recordings. B: net ionic current for short and
longAPD90 waveforms. In B, trace d is difference current between two
waveforms, and filled area was used to measure total charge differ-
ence between action potentials.
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a single channel model of the unclamped nerve membrane
based upon the original Hodgkin and Huxley (1952) model
(Skaugen and Wall0e, 1979; Clay and DeFelice, 1983;
DeFelice and Clay, 1983; van Meerwijk, 1988). The sto-
chastic model comprises two extra parameters: the numbers
of sodium and potassium channels in the membrane patch
under consideration. These numbers may be inferred from
estimates of channel densities or from estimates of single
channel conductances.

Single pacemaker cells isolated from the rabbit sinoatrial
(SA) node discharge irregularly (Fig. 1): their interbeat in-
terval (IBI) shows random fluctuations about an ideal mean.
Similar observations have been made in other preparations
that display spontaneous beating, e.g., in small clusters of
embryonic chick ventricular cells containing 1-125 cells
(Clay and DeHaan, 1979), in single neonatal rat atrial and
ventricular cells (Jongsma and Tsjernina, 1982), and in small
groups of neonatal rat heart cells (Jongsma et al., 1983). Clay
and DeHaan (1979) hypothesized that these random fluc-
tuations in IBI, like the threshold fluctuations in nerve mem-
brane, result from random opening and closing of membrane
ionic channels. They constructed a simple model of random
membrane voltage fluctuations superimposed on a linear de-
polarization from maximum diastolic potential to threshold.
The membrane voltage noise needed to explain experimen-
tally observed IBI fluctuations corresponded nicely to that
extrapolated from steady-state noise recorded from resting
heart cell aggregates. They noted, as did Clay and DeFelice
(1983), that a more detailed model study of the relationship
between IBI fluctuations and single channel open-close ki-
netics would require a complete set of voltage clamp data on
heart cell membrane currents, to be obtained in whole cell as
well as single channel experiments. Such experiments have
now been carried out on single isolated rabbit SA node cells,
yielding detailed information on conductance and kinetics of
the L- and T-type calcium currents iCa,L and iCa,T (Hagiwara
et al., 1988), the hyperpolarizing-activated current if
(DiFrancesco, 1986; DiFrancesco et al., 1986; van Ginneken
and Giles, 1991), and the delayed rectifying potassium cur-
rent iK (Shibasaki, 1987), which are believed to be the major

OmV -

-5OmV -

lOOms

FIGURE 1 Beating irregularity of a single pacemaker cell isolated from
the rabbit sinoatrial node, demonstrated by superimposing 100 consecutive
action potentials that were recorded from cell 910108c2.

gated membrane currents in these cells (for a review, see

Irisawa et al., 1993). These data were used when constructing
our deterministic model describing the electrical activity of
a single pacemaker cell isolated from the rabbit SA node
(Wilders et al., 1991).
The aim of the present study was to investigate in detail

the relationship between fluctuations in interbeat interval of
single SA node pacemaker cells and the open-close kinetics
of the membrane ionic channels. To this end, we constructed
a stochastic model of electrical activity of a single isolated
rabbit SA node cell based upon our deterministic model.
Instead of adding noise to the differential equations, we al-
lowed noise as a consequence of channel kinetics: single
channel open and closed lifetimes were obtained from a
probabilistic interpretation of the deterministic rate con-
stants. The principles of this simulation technique have
previously been set out by Skaugen and Wall0e (1979), Clay
and DeFelice (1983), DeFelice and Clay (1983), and van
Meerwijk (1988). For each time-dependent (gated) mem-
brane current, the number of channels was inferred from the
fully activated conductance in the deterministic model and an
estimate of the single channel conductance under normal
physiological conditions.
Model results were compared with data from current

clamp experiments on single isolated rabbit SA node cells
that were carried out in our laboratory. The model was used
to determine the contribution of each gated membrane cur-
rent to fluctuations in interbeat interval and to study the re-
lationship between fluctuations in interbeat interval and the
number of ion channels in the cell membrane. This study has
been published in preliminary form as part of a doctoral
thesis (Wilders, 1993).

MATERIALS AND METHODS

Experiments

In a correlative study on electrical and morphological properties of single
pacemaker cells isolated from the rabbit SA node, trains of -100 action
potentials were recorded in our laboratory by E. E. Verheijck, A. C. G.
van Ginneken, and L. N. Bouman. Their experimental methods will be
described in detail elsewhere (manuscript in preparation). In brief, cells
were enzymatically dissociated from the SA nodal region of hearts of
1.8-2.5-kg New Zealand albino rabbits according to the method of Di-
Francesco et al. (1986), with some modifications. For single cell record-
ings, both "spindle" and "elongated spindle" cells (Verheijck et al., 1992)
were used. The membrane potential of these pacemaker cells was re-
corded using either the whole cell patch clamp technique (Hamill et al.,
1981) or the perforated patch clamp technique (Horn and Marty, 1988), in
the current clamp mode. All experiments were performed at 35 ± 0.5° C.
Action potential parameters (see "Glossary") were measured using a
custom-written program that was run in a LabVIEW software environ-
ment (National Instruments Corporation, Austin, TX) on a Macintosh Ilci
computer (Apple Computer, Inc., Cupertino, CA).

Before any further analysis, we inspected the action potential parameters
for apparent artifacts such as, e.g., a beat-to-beat decrease in action potential
amplitude or a sudden increase in maximum diastolic potential, associated
with "rundown" and recording pipette instabilities, respectively. If such
artifacts, which may have considerable effects on the fluctuations in inter-
beat interval, were detected, the experiment was discarded.
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FIGURE 4 Fluctuations in interbeat interval of a single pacemaker cell isolated from the rabbit sinoatrial node. Data from cell 910221cl; number of intervals
analyzed = 100. (A) Superimposed action potentials. (B) Autocorrelogram of the interbeat interval. Confidence limits at the 0.05 level of significance are

indicated by dotted lines. The inset shows the time series from which the autocorrelogram was derived. (C) Interbeat interval grouped into 5-ms bins. The
smooth curve superimposed on the histogram is the normal distribution to which the data were fitted. Mean = 379 ms; SD = 6.4 ms.

fluctuations of single isolated neonatal rat atrial and ven-
tricular cells. Little attention has been paid to IBI fluctuations
of single isolated rabbit SA node cells. op 't Hof et al. (1987)
attributed these fluctuations to "variability in the second part
of diastole."

Let us assume that, in accordance with the above models,
IBI fluctuations of single isolated rabbit SA node cells arise
from fluctuations in DDR from a fixed MDP toward a fixed
TOP. In the 14 cells examined, the coefficient of variation
of DDR-1 ranges from 10 to 26%. For cell 910221cl it
amounts to 14%. From this figure one would expect the co-
efficients of variation of IBI-APD100 and IBI of this cell to
be -14 and -6.5%, respectively. The actual figures, how-
ever, are 4.8 and 1.7%, respectively. In Fig. 5 A it is dem-
onstrated that the actual IBI-APD100 is only weakly depend-
ent on DDR-1 (Fig. 5 A, circles), in contrast, of course, to
the IBI-APD100 expected from the assumption made (Fig. 5
A, squares).

From the action potential parameters we can discern two
relationships that prevent large fluctuations in DDR from
inducing large fluctuations in IBI. First, there are large fluc-
tuations in "threshold" that exhibit a clear-cut relation to
DDR (Fig. 5 B): the higher DDR, the longer the way to
threshold (TOP-MDP). MDP is very nearly constant,
whereas TOP can be 10-22 mV positive to MDP, with a 17%
coefficient of variation. This way, the 14% coefficient of

variation of DDR-1 is "reduced" to a 4.8% one of IBI-
APD100. If APD10o were constant, this figure would yield a
CIBI of 2.2%. Secondly, there is a negative correlation be-
tween APD100 and IBI-APD100 (Fig. 5 C), thus "reducing"
CIBI even further to its actual value of 1.7%. Similar rela-
tionships were discerned from the action potential param-
eters of the remaining 13 cells.

Action potential parameters: model results

Now that we have presented and discussed experimental ob-
servations of fluctuations in action potential parameters of
rabbit SA node cells, we turn to fluctuations in action po-
tential parameters of our stochastic model cell.

Coefficient of variation of interbeat interval

To get an impression of the IBI fluctuations of our standard,
32-pF, model cell, we calculated CIBI from trains of 100
action potentials. Different trains were obtained by setting
the seeds of our random number generator to different values.
Similar calculations were carried out for 16- and 23-pF
model cells. Results are listed in Table 3. Model values of
CIBI are quite similar to the ones obtained experimentally
(Table 2) and increase slightly with decreasing Cm, i.e., with
decreasing numbers of membrane ionic channels (Table 3).
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Single channel noise ! irregularity of beating

2 Introduction

1.1 Membrane noise

1.1.1 Single-channel noise

With the development of the patch-clamp technique it became possible to measure

the current flow across tiny patches of membrane, clamped at a fixed transmembrane

potential (91). An example is shown below.

i2
i
0

1 
pA

4 s

Figure 1.1: Single-channel current through mutant cystic fibrosis transmem-

brane conductance regulator (CFTR) channels. Channel openings are downward

deflections. Courtesy of John. W. Hanrahan. For more examples of single-

channel recordings see e.g. Ref. 60.

The current varies in a step-like manner between three different levels: 0, i,

and 2i. The interpretation is that the patch contains two identical ionic channels,

each of which can be either closed or open. Ions can diffuse through an open channel

with a fixed conductance (the single-channel conductance), but cannot go through

the channel when it is in its closed configuration. Thus, when both channels in

the patch are closed, no current is conducted (level 0), when one channel is open a

single-channel current i is conducted, and when both channels are open the current

is 2i.

The average time that a channel spends in a given state generally depends



One current stochastic 
at a time

IKs: few channels, 
slow gating
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Atrial fibrillation:

Wikimedia Commons

• Rapid, irregular activation of the atria

• Loss of synchronized atrial contraction 

• Rapid, irregular ventricular rate

• The most common sustained arrhythmia: more than 10% of 

population over the age of 80

• Associated with significant mortality and morbidity

AF
Sinus 
rhythm

Multiscale modeling example: atrial fibrillation maintenance



• In patients with chronic AF, fibrillatory episodes are of 
increased duration and frequency of occurrence

• This is due to ionic, structural, and contractile 
remodeling processes. 

1. Clinical conditions associated with the initiation
of AF

Little is known about the mechanisms or clinical
conditions that initiate episodes of the arrhythmia. This
can be illustrated by the fact that many patients with an
accumulation of the above-mentioned AF-causing factors,
e.g., patients with advanced heart failure, never experi-
ence AF in their lifetime. A sizeable portion of patients
with lone AF suffer from “focal AF” that is initiated by
triggers that can be localized to preferential sites, mainly
the pulmonary veins (PV) (217). Electrical isolation of
PVs can prevent recurrence of AF in 70–80% of these lone
AF patients during a follow-up period of several years
(83). Stretch-activated or catecholamine-dependent auto-
maticity (52), as well as abnormal calcium handling (440),
have been suggested as mechanisms causing AF in focal
AF patients, but so far these mechanisms have not been

shown to be related to specific clinical conditions other
than AF itself.

2. Clinical conditions associated with the development
of a substrate for AF

Hypertension is found in 60–80% of AF patients
(396). Hypertension is an independent predictor of AF
(581), and it contributes to AF progression. Vascular dis-
ease, and most notably coronary artery disease, is found
in one-fourth to one-third of AF patients in surveys (396,
416), and may be associated with AF-related complica-
tions (255). Heart failure with dyspnea on exertion (NYHA
classes II-IV) is found in 30% of AF patients (416), and AF
is found in 30–40% of patients with heart failure (115).
Heart failure and AF appear to promote each other, with
AF compromising LV function, and LV dysfunction caus-
ing atrial dilation and pressure overload. Valvular heart
disease, especially mitral valve disease, was the most
common clinical condition associated with AF 50 years
ago. Early antibiotic therapy of streptococcal infections
has markedly reduced severe mitral valve disease in more
recent surveys (396, 416). These conditions are associated
with atrial dilatation, which plays an important causative
role in the development of a substrate of AF (sects. IV and
V). Diabetes mellitus is one of the established risk factors
for stroke in AF patients (190) and is found in !20% of all
patients with AF (396, 416). The high prevalence of dia-
betes mellitus in AF populations suggests that diabetes
may either cosegregate with AF due to similar conditions
that cause both AF and diabetes, or may imply that dia-
betes mellitus plays a causative role in the occurrence of
AF. Thyroid dysfunction, and especially hyperthyroidism,
is also associated with AF. Adequate therapy of thyroid
disease often terminates AF. Improved clinical manage-
ment of thyroid disease has rendered thyroid dysfuction
relatively rare in current AF populations (416).

It is well worth noting that all these clinical condi-
tions appear to enhance AF susceptibility in an additive
manner, as the prevalence of persistent AF increases
steadily depending on the number of such conditions
present (Fig. 1B). As we will discuss in sections IV–VI,
these conditions will increase AF propensity by many
diverse mechanisms. Understanding this diversity of the
mechanisms finally leading to AF is one of the unmet
challenges in unraveling AF pathophysiology.

II. ATRIAL-SPECIFIC ASPECTS OF
CARDIAC PHYSIOLOGY

Before proarrhythmic mechanisms in the atria will be
discussed, some atrial specific aspects of cardiac physi-
ology relevant to AF will be reviewed with a focus on
differences between atria and ventricles and regional dif-
ferences in function.

FIG. 1. A: example of the “natural” course of the arrhythmia in an
atrial fibrillation (AF) patient. Typical pattern of time in AF (black) and
sinus rhythm (gray) over time (x-axis). AF progresses from undiagnosed
to first diagnosed, paroxysmal, persistent, and permanent. Flashes indi-
cate cardioversions as examples of therapeutic interventions that influ-
ence the time course of the arrhythmia. B: graph shows the type of AF
as a function of the number of “concomitant conditions” at the enroll-
ment visit into the AFNET registry that included 9,582 patients through-
out Germany from 2004 to 2006 (396). AF was classified as first episode,
paroxysmal, persistent, or permanent. Concomitant conditions were
defined as age "75 years, hypertension, diabetes (treated), cardiomyop-
athy, heart failure, valvular disease, or replacement. The proportion of
patients in permanent AF increases while the percentage of patients in
paroxysmal AF decreases almost linearly with increasing number of
concomitant conditions. The proportion of patients in persistent AF
remains relatively constant, suggesting that this is a transitory state
between paroxysmal and permanent AF. First episode of AF becomes
less likely in the patient population with many conditions.
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M. Allessie et al. / Cardiovascular Research 54 (2002) 230–246 231

(Fig. 1). This observation of tachycardia-induced electrical different types of AF were first distinguished by Wells et

remodeling creating a substrate for persistent AF, led to the al. [7] based on difference in morphology of bipolar

concept that ‘Atrial Fibrillation Begets Atrial Fibrillation’ fibrillation electrograms and later by Konings et al. by

[1]. different degrees of complexities in high density maps of

The higher susceptibility to AF was explained by a AF [8]. Due to the shortening in wavelength, now multiple

shortening of the wavelength of the atrial impulse [3,4]. wavelets were wandering under the mapping electrode

When the wavelength is short, small regions of intra-atrial (type III AF). This higher degree of spatial dissociation

conduction block may already serve as a site for initiation lowers the chance that the fibrillation waves will all die

of reentry, thus increasing the vulnerability for AF. A short out, making it less likely that AF will self-terminate.

wavelength is also expected to increase the stability of AF Shortly after the demonstration of tachycardia-induced

because it allows more reentering wavelets to coexist in electrical remodeling, the ionic mechanisms underlying

the available surface area of the atria. This is illustrated in this arrhythmogenic process have been elucidated by a

the right part of Fig. 1, showing high density maps number of elegant and convincing studies [9–13]. Action

(diameter 4 cm, 240 electrodes) from the free wall of the potential recordings and patch clamp experiments in

right atrium during paroxysmal (top) and persistent AF isolated atrial cells from animal models and patients in

(bottom) [5]. Whereas during control (no remodeling) the chronic AF showed a consistent pattern. The most im-

right atrium was activated by broad fibrillation waves (type portant impact of AF on the ion channels was a marked
21

I AF), after electrical remodeling the fibrillation waves reduction in the L-type Ca current. This explains the

were much more disorganized (type III AF) [6]. These shortening of the atrial action potential and the loss of the

Fig. 1. Left: prolongation of the duration of episodes of electrically induced AF in the goat as a result of electrical remodeling (from Wijffels et al. [1]).

Right: high density mapping of the free wall of the right atrium of a goat during acutely induced (top) and persistent AF (bottom). The mapping array

(diameter 4 cm) contained 240 electrodes with an interelectrode distance of 2.25 mm. Isochrones are drawn every 10 ms. The direction of propagation is

indicated by arrows (from Konings et al. [5]).

Wijffels et al., 
Circulation, 1995.

“AF begets AF”



Ionic and structural remodeling

Multiscale modeling example: AF maintenance

M. Courtemanche et al. / Cardiovascular Research 42 (1999) 477 –489 481

presents corresponding experimental data (right panel)
taken from the measurements of Boutjidir et al. [9].
Although rate-adaptation of the model NAP is consistent
with some experimental data [14,17], the model typically
exhibits a smaller decrease in APD at faster rates ($ 390
Hz) compared to other experimental recordings (e.g. Refs.
[9,16]). However, a comparison of rate-adaptation in the
model NAP and AFAP confirms that the model reproduces
qualitatively important features of AF-induced remodeling

Fig. 3. Comparison of model APs (left) with experimentally recorded observed in experimental preparations, namely the overallAPs from tissue samples of patients (right). In each panel, both NAP
decrease in APD and the reduced extent of rate-adaptation.(solid line) and AFAP (dashed line) morphologies are compared. Ex-
The changes in APD that accompany changes in stimula-perimental data is adapted from Boutjidir et al. [9].
tion period in the model AFAP are quite similar to the
experimental data of Boutjidir et al., but the model NAP

APs with only one of I (lower left), I (lower right), or exhibits less of a decrease in APD with decreasingto Kur
I (upper right) currents altered in the same way as in stimulation period compared to the experimental data.Ca,L
the AFAP. The effects of individual current abnormalities
on the NAP reveal that I reduction plays the major role 3.3. Potassium channel blockade in model NAP andCa,L
in the observed change between the model NAP and AFAP
AFAP, reproducing the triangular morphology and ab-
breviation of the AP typical of AF. Compared to the AP We investigated the effect of potassium channel bloc-
with I alteration alone, the reductions in I and I kade, implemented via a reduction in maximal conduct-Ca,L to Kur
produce a slowing of phase 1 repolarization and an ance of specific potassium currents, on morphology and
increase in AP plateau height that may play a role in duration of the model NAP and AFAP. We selected as our
modulating the response of the AFAP to potassium current targets four currents: I (90% inhibition), I (90%to Kur
inhibition (see below). inhibition), I (90% inhibition), I (90% inhibition), andKr Ks

I (20% inhibition). Extensive block of I compromisesK1 K1
3.2. Rate-adaptation the stability of the resting potential in the model, with

failure of repolarization or excessive resting potential
A shortened APD and decreased adaptation to rate have depolarization occurring for decreases of the inward

been observed as a consequence of AF-induced remodeling rectifier greater than 20%. Results are presented with
[9,16]. We investigated the rate-dependence of APD mea- respect to the control values APD , corresponding260
sured at APD in both NAP and AFAP. Fig. 5 illustrates approximately to the ERP, which are 260 ms for the model90
the relationship between APD and basic pacing cycle NAP and 177 ms for the model AFAP (at 1 Hz).90
length for the model NAP and AFAP (left panel) and Fig. 6 shows the result of I inhibition on the NAP andto

AFAP during pacing at 1 Hz. Inhibition of I shortens theto
NAP by 40 ms (15%) and the AFAP by 15 ms (8%). This
paradoxical shortening of APD in response to blockade of
a repolarizing current (I ) has been observed experimen-to
tally [18]. As shown in the upper panels of Fig. 6,
inhibition of I causes a slowing of phase 1 repolarizationto
following the AP upstroke. This is associated with a more
positive plateau potential, sustained by a balance between
increased I and increased I (see middle and bottomCa,L Kur
panels). The elevated plateau potential allows for greater
activation of I (compare middle and lower panels) thatK
increases the rate of mid- and late-repolarization, ultimate-
ly producing a shorter APD. Thus, a secondary increase in
I explains the paradoxical AP shortening caused by IK to
inhibition in both the NAP and AFAP models.
Fig. 7 shows the result of I inhibition on the modelKr

APs. Inhibition of I prolongs the NAP by 105 ms (38%)KrFig. 4. Role of AF-induced ionic current abnormalities in producing and the AFAP by 60 ms (34%). Inhibition of I (notKsmodel AFAP morphology. The first panel (top left) presents a comparison shown) prolongs the NAP by 32 ms (12%), prolongs theof model NAP and AFAP. Successive panels show a comparison between
AFAP by 12 ms (7%), and is qualitatively similar tothe model NAP and APs with only one of I (lower left), I (lowerto Kur

right), or I (upper right) currents being altered. inhibition of I in its effect on the AP. Because I and ICa,L Kr Kr Ks

% ICa 
% IKur 
% Ito

Burstein & Nattel, 
J. American College of Cardiology, 2005.

Courtemanche et al., 
Cardiovascular Research, 1999.
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Effects of remodeling on wavelength
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eling. Altered regulation of K! channels may also contrib-
ute to functional alterations. Increased CaMKII phosphor-
ylation contributes to Ito changes in AF patients (307).

Several studies have reported alterations in delayed-
rectifier K! channel subunits in AF patients, including
decreased mRNA expression of ERG and KvLQT1 along
with increased expression of minK (97, 162) and de-
creased ERG and minK protein expression (41). The sig-
nificance of these differences is difficult to assess in the
absence of information on IKr and IKs function.

2. Changes in inward-rectifier K! currents

Potentially important changes have been reported in
inward-rectifier K! channel function in AF, particularly
for IK1 and the acetylcholine-dependent K! current IKACh.
Several studies have reported increased background in-
ward-rectifier current, attributed to IK1, in atrial cardio-
myocytes from AF patients (30, 70, 72, 97, 330, 345). Initial
studies in dogs did not describe changes in IK1 (362), but
increased IK1 was observed subsequently (52, 53). IK1

increases correspond to more negative resting potentials
(reflecting greater resting IK1 conductance) in human (70)
and canine (120) atrial tissues. Increased Kir2.1 mRNA
(70, 97) and protein (97) expression have been reported in
AF patients.

Stimulation of cardiac M2 muscarinic cholinergic re-
ceptors by cholinergic agonists elicits a large K! current,
IKACh, which strongly promotes AF (156). Decreases in
IKACh subunit (Kir3.1 and 3.4) mRNA (41, 43, 70) and
protein (41, 43) have been reported, corresponding to a
decreased current response to M2-receptor stimulation
(70, 72). Canine cardiomyocytes possess constitutively
active IKACh (present in the absence of M2-receptor ago-
nists) that is upregulated by atrial tachycardia (81). Con-
stitutive IKACh is also upregulated in cardiomyocytes from
AF patients (69) and contributes to atrial tachycardia
remodeling-induced APD abbreviation and atrial-tachy-
arrhythmia promotion in canine atrium (51). The mecha-
nism of atrial tachycardia-induced increases in constitu-
tive IKACh is unclear. The expression of the Kir3.1 and

FIG. 7. Pathophysiology of AF promotion by atrial tachycardia remodeling (ATR). The ATR-induced changes in atrial-cardiomyocyte electro-
physiology that result in AF promotion are indicated in red, with control-cell properties depicted in black. ATR creates a substrate for multiple
circuit reentry; for a detailed review, see Nattel et al. (214). The reentry substrate is favored by decreases in refractory period (RP) and conduction
velocity (CV). The minimum size of a functional reentry circuit is given by the wavelength (WL), or product of RP and CV. The shorter the WL, the
larger the number of reentry circuits that can be maintained simultaneously. When the WL is reduced, the atria move from the condition shown at
the left of the black inset, in which very few circuits are possible and the arrhythmia is unstable, to the situation at the right, for which many more
circuits exist and simultaneous extinction of all circuits (as would be needed to stop arrhythmia) is unlikely. APD is decreased by decreased ICaL,
increased IK1, and increased IKACh,c. CV is decreased because of decreased INa and/or connexin changes, including decreased numbers, increased
heterogeneity, and lateralization of connexins. Ca2!-handling abnormalities producing abnormal diastolic Ca2! release events have been reported
with ATR, potentially causing delayed afterdepolarization-mediated ectopic complexes that could act as a trigger on the reentry substrate to initiate AF.
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~2,000,000 virtual cells. 

Computationally demanding, 
but easily parallelized.

Materials and Methods

Anatomy of the Atrial Mesh
We have constructed a boundary-conforming mesh of the human

atria comprised entirely of hexahedral (eg, 6-sided) elements. The

original set of surfaces used to guide the creation of the mesh was

purchased from Viewpoint Digital. These surfaces were compared

with literature reports of normal human atrial dimensions20–30; where

they diverged from these, they were modified accordingly. The

dimensions of components of the mesh are given in supplemental

Tables 1 through 3 (available in an online data supplement at

http://www.circresaha.org). From the modified surfaces, a block-

structured (multiblock) hexahedral mesh31,32 was made using True-

Grid from XYZ Scientific Applications.

The assembled human atrial mesh is presented in the center panel

of Figure 1, in a left anterior view (see supplemental animation,

spinning_mesh.mpg; available in an online data supplement at

http://www.circresaha.org). The mesh includes 248,264 elements

and is comprised of 7 constituent parts, each of which appears in the

periphery of Figure 1. The block structure of each part appears in

Figure 1, at the beginning of the chain of arrows leading to the full

mesh. Figure 2 shows the left anterior (a) and posterior (b) views of

the surface-rendered complete mesh. A detailed view of the right

atrial endocardial structure appears in Figure 3. Two interatrial

connections, Bachmann’s bundle and a region at the fossa ovalis

(Figure 4d), carry current between the right and left atria. A number

of meshed regions are defined to be bundles. These regions are the

crista terminalis; the right atrial pectinate muscle network; Bach-

mann’s bundle; the intercaval bundle; and the limbus of the fossa

ovalis (Figures 4a and 4b). The number of elements used in each

component part of the mesh is scalable. The mesh used for

simulations had element sizes that ranged from 50 to 1650 !m, with
a mean interelement distance of 550 !m; 95% of the step sizes are

smaller than 1060 !m. Most of the largest elements were located in
the left atrial appendage.

Current Flow
The mathematics of the monodomain model and finite volume

method used to model the spatial spread of electric current has been

described by us previously.33 The transmembrane flow is represented

according to the human atrial cell formulation of Nygren et al.18 The

cell diameter listed by them of 11 !m gives rise to a surface-to-

volume ratio of 3636/cm in our model.

Assignment of Regional Conductivities
To minimize complexity, only 3 conductivities are assigned to the

model. The values of conductivities were selected to obtain realistic

conduction velocities of !60 to 75 cm/s in the bulk tissue, 150 to
200 cm/s in the bundles, and 30 to 40 cm/s in slow regions.

Because the model of Nygren et al18 assumes a surface-to-volume

ratio of 3636/cm and produces a propagating action potential with a

Figure 1. Block structure and low-density
mesh views of each of the 7 parts (a
through g) (periphery) and the fully
assembled mesh (center). The number of
elements used for each of the parts is
indicated. The complete mesh includes
248 264 hexahedral elements. RA indi-
cates right atrium; SVC/IVC, superior/infe-
rior vena cava; FO, interatrial connection
at the fossa ovalis; LAA, left atrial
appendage; LA, left atrium; BB, Bach-
mann’s bundle; and Pects, pectinate
muscles.

2 Circulation Research September 29, 2000

 by on November 17, 2010 circres.ahajournals.orgDownloaded from 

RA LA
LAA

LPV

isthmus

pectinate
muscles

BB

fossa ovalis

Harrild & Henriquez 
Circ Res, 2000.

Anatomical structure
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Alternans and alternans control

4 1 Control of Cardiac Electrical Nonlinear Dynamics
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Fig. 1.2 A typical action potential duration
(APD) restitution curve, generated with the
Shiferaw et al. model [54] of a ventricular
cell. To generate the APD restitution curve,
a train of action potentials are stimulated at
a constant pacing rate, followed by one pre-
mature stimulus. Thus, the diastolic interval

(DI) following the penultimate action poten-
tial is varied, and the duration of the resulting
action potential is plotted as a function of the
preceding DI. As the action potentials in the
insets demonstrate, APD shortens as DI is
shortened, leading to a restitution curve with
the general shape as shown.
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Fig. 1.3 Action potential duration bifurcation
diagram, generated with the Shiferaw et al.
model [54] in a one-dimensional cable. When
pacing at a relatively slow rate, identical ac-
tion potentials occur each time a stimulus is

applied (i.e., 1:1 behavior). However, increas-
ing the pacing rate causes the action potential
behavior to bifurcate, such that for every two
stimuli, two different action potentials occur
(i.e., 2:2 behavior).

given cell bifurcates to alternans is dependent upon the membrane currents
and intracellular regulatory mechanisms operating in that cell.

Our interest in alternans resides in the role of alternans as a precursor, or
even as a trigger event, for more complex and potentially fatal cardiac ar-
rhythmias. The details of the implications of APD alternans for ventricular
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preceding DI. As the action potentials in the
insets demonstrate, APD shortens as DI is
shortened, leading to a restitution curve with
the general shape as shown.
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Fig. 1.3 Action potential duration bifurcation
diagram, generated with the Shiferaw et al.
model [54] in a one-dimensional cable. When
pacing at a relatively slow rate, identical ac-
tion potentials occur each time a stimulus is

applied (i.e., 1:1 behavior). However, increas-
ing the pacing rate causes the action potential
behavior to bifurcate, such that for every two
stimuli, two different action potentials occur
(i.e., 2:2 behavior).

given cell bifurcates to alternans is dependent upon the membrane currents
and intracellular regulatory mechanisms operating in that cell.

Our interest in alternans resides in the role of alternans as a precursor, or
even as a trigger event, for more complex and potentially fatal cardiac ar-
rhythmias. The details of the implications of APD alternans for ventricular
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Basic concept: eliminate alternans by applying (small) 
electrical stimuli at well-timed intervals 

10 1 Control of Cardiac Electrical Nonlinear Dynamics

1.5.1
Controlling Cellular Alternans

Recent research has suggested that control algorithms targeted at cardiac al-
ternans could potentially lead to an improvement in the therapeutic efficacy
of implantable devices such as ICDs.

Most of this work is based on model-independent, adaptive control algo-
rithms, e.g., delayed feedback control (DFC). In this method, which is based
on the Ott-Grebogi-Yorke (OGY) [44] technique for chaos control, small per-
turbations are applied to the timing of the next excitation in an attempt to
force the state of the system toward the (unstable) period-1 fixed point. Un-
like chaos control techniques, DFC algorithms do not require a learning stage
(i.e., learning the dynamics in the neighborhood of the unstable period-1 so-
lution). This is important, because during alternans, the dynamics evolve far
from the period-1 dynamics (unless the alternans amplitude is very small).
Delayed feedback control (DFC) algorithms typically require (i) knowledge of
the state of the system for a very short time history, and (ii) a basic under-
standing of the system dynamics to ensure that the control perturbations are
of the proper magnitude and polarity. These two elements allow the periodic
rhythm to be stabilized by repeated adjustment of the stimulation time.

Let BCL (basic cycle length) be the time interval between two stimulations.
A typical DFC algorithm for alternans control is:

BCLn+1 =

{
BCL! for ∆BCLn+1 > 0,
BCL! + ∆BCLn+1 for ∆BCLn+1 ≤ 0,

(1.1)

with

∆BCLn+1 =
γ

2
(APDn+1 −APDn), (1.2)

where γ is the feedback gain and BCL! is the nominal BCL. The restriction
that a perturbation is only given to shorten, and not delay, the intrinsic rhythm
reflects the fact that, in the heart, it is often not possible to delay the excitation:
it will occur naturally without stimulation. Thus, this algorithm is said to be
restricted. Both unrestricted DFC algorithms (which allow both lengthening
and shortening of the BCL during control) and restricted DFC algorithms have
been applied to cardiac rhythm disturbances.

An example of alternans control in a mathematical model is shown in Fig. 1.5.
Essentially, the restricted algorithm works by shortening the long DI by giving
a premature stimulation. This in turn shortens the long APD due to restitu-
tion, as described in section 1.2.1. Eventually, the unstable period-1 solution is
stabilized and action potentials of constant duration are established. The rate
of convergence is controlled by the feedback gain.
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studies were approved by the Institutional Animal Care and
Use Committee of the Center for Research Animal
Resources at Cornell University. Pacing stimuli (2 ms du-
ration) were delivered to either end of the fiber via a bipolar
electrode. Action potentials were recorded [sampled at
1 kHz with 12-bit resolution [19] ] simultaneously from
6 sites along the fiber using standard microelectrode tech-
niques. Following 60 minutes of equilibration at a pacing
cycle length (T!) of 300 ms, T! was decreased progres-
sively by 10 ms decrements to induce alternans—concord-
ant (i.e., all spatial regions alternate in phase) at slower
pacing rates and discordant (i.e., distinct spatial regions
alternate out of phase) at faster pacing rates. The pacing
protocol subsequently was repeated with the application of
the control algorithm at each T!. Both the pacing and
control stimuli were applied to the same end of the fiber.

As in previous alternans control studies, the interstimu-
lus interval was adjusted for each stimulus according to:

Tn "
!
T! # !Tn if !Tn < 0;
T! if !Tn $ 0;

(1)

where

!Tn " %!=2&%An ' An'1&; (2)

T! is the pacing cycle length without control, ! is the
feedback gain (which typically ranged from 0.6 to 1.0,
and was held constant for the duration of each experiment),
A is the APD at the proximal microelectrode (‘‘Lead 1’’ in
Figs. 1 and 2) and n is the interval number. No significant
differences in the ability to control alternans were detected
for different ! values between 0.6 and 1.0.

The algorithm was similar to that used for control of
APD alternans in Refs. [14,17], although the approaches
used in those studies did not impose any conditions on
!Tn, (i.e., Tn " T! #!Tn for all !Tn). The conditions of
Eq. (1) were used in this study for two reasons. First, such
an implementation is more electrophysiologically realistic
than the unconditional approach. In an intact heart, in
which the underlying pacing is the result of native electro-
physiological activity rather than external stimulation, it is
not possible to prolong an interstimulus interval [13,20].
Second, algorithms using only negative perturbations have
been shown analytically to have a larger successful-control
regime than those that apply both positive and negative
perturbations [12,21]. However, a disadvantage of the for-
mer is that they achieve control slower (i.e., more beats are
required to suppress alternans after control is activated).

In this study, in the absence of control [as described in
detail previously [5,22,23] ], progressive shortening of T!
produces a stereotypical sequence of APD dynamics, in-
cluding a period-doubling bifurcation that initially takes
the form of concordant APD alternans and subsequently is
converted to discordant alternans at the shortest T!.
Examples of such uncontrolled dynamics are shown in
Fig. 1. They include: (1) concordant alternans at T! "

200 ms, during which APD for all sites on the fiber alter-
nate in phase [leftmost column of Fig. 1(a)]; (2) increased
magnitude of alternans at the site of stimulation at T! "
190 ms, with a reduction of alternans magnitude at more
distal sites [leftmost column of Fig. 1(b)]; (3) discordant
alternans at T! " 160 ms, during which the alternans of
APD at the proximal and distal ends of the fiber are out of
phase [leftmost column of Fig. 1(c)].
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FIG. 1 (color). Data from two consecutive action potentials
recorded from 6 microelectrodes spaced along the length of a
Purkinje fiber (Lead 1 is proximal; Lead 6 is distal) in one
representative control experiment. Stimulation was applied to
the proximal end of the fiber near microelectrode 1 (x " 0 cm).
For each of the three rows [(a), (b), and (c)]: (1) T! is shown on
the left, (2) membrane potential vs time for microelectrodes 1
through 6 (which correspond to x " 0 and 2 cm, respectively)
are shown in the left column (before control) and middle column
(during control), and (3) the right column shows APD values
computed from the six microelectrodes for the same alternate
beats before (top panels) and during (bottom panels) control.
During control, stimulation was adapted according to Eq. (1). In
the middle column, action potentials for which control failed to
eliminate alternans are shown in red and blue, while those in
which alternans was suppressed are shown in black.
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studies were approved by the Institutional Animal Care and
Use Committee of the Center for Research Animal
Resources at Cornell University. Pacing stimuli (2 ms du-
ration) were delivered to either end of the fiber via a bipolar
electrode. Action potentials were recorded [sampled at
1 kHz with 12-bit resolution [19] ] simultaneously from
6 sites along the fiber using standard microelectrode tech-
niques. Following 60 minutes of equilibration at a pacing
cycle length (T!) of 300 ms, T! was decreased progres-
sively by 10 ms decrements to induce alternans—concord-
ant (i.e., all spatial regions alternate in phase) at slower
pacing rates and discordant (i.e., distinct spatial regions
alternate out of phase) at faster pacing rates. The pacing
protocol subsequently was repeated with the application of
the control algorithm at each T!. Both the pacing and
control stimuli were applied to the same end of the fiber.

As in previous alternans control studies, the interstimu-
lus interval was adjusted for each stimulus according to:

Tn "
!
T! # !Tn if !Tn < 0;
T! if !Tn $ 0;

(1)

where

!Tn " %!=2&%An ' An'1&; (2)

T! is the pacing cycle length without control, ! is the
feedback gain (which typically ranged from 0.6 to 1.0,
and was held constant for the duration of each experiment),
A is the APD at the proximal microelectrode (‘‘Lead 1’’ in
Figs. 1 and 2) and n is the interval number. No significant
differences in the ability to control alternans were detected
for different ! values between 0.6 and 1.0.

The algorithm was similar to that used for control of
APD alternans in Refs. [14,17], although the approaches
used in those studies did not impose any conditions on
!Tn, (i.e., Tn " T! #!Tn for all !Tn). The conditions of
Eq. (1) were used in this study for two reasons. First, such
an implementation is more electrophysiologically realistic
than the unconditional approach. In an intact heart, in
which the underlying pacing is the result of native electro-
physiological activity rather than external stimulation, it is
not possible to prolong an interstimulus interval [13,20].
Second, algorithms using only negative perturbations have
been shown analytically to have a larger successful-control
regime than those that apply both positive and negative
perturbations [12,21]. However, a disadvantage of the for-
mer is that they achieve control slower (i.e., more beats are
required to suppress alternans after control is activated).

In this study, in the absence of control [as described in
detail previously [5,22,23] ], progressive shortening of T!
produces a stereotypical sequence of APD dynamics, in-
cluding a period-doubling bifurcation that initially takes
the form of concordant APD alternans and subsequently is
converted to discordant alternans at the shortest T!.
Examples of such uncontrolled dynamics are shown in
Fig. 1. They include: (1) concordant alternans at T! "

200 ms, during which APD for all sites on the fiber alter-
nate in phase [leftmost column of Fig. 1(a)]; (2) increased
magnitude of alternans at the site of stimulation at T! "
190 ms, with a reduction of alternans magnitude at more
distal sites [leftmost column of Fig. 1(b)]; (3) discordant
alternans at T! " 160 ms, during which the alternans of
APD at the proximal and distal ends of the fiber are out of
phase [leftmost column of Fig. 1(c)].
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FIG. 1 (color). Data from two consecutive action potentials
recorded from 6 microelectrodes spaced along the length of a
Purkinje fiber (Lead 1 is proximal; Lead 6 is distal) in one
representative control experiment. Stimulation was applied to
the proximal end of the fiber near microelectrode 1 (x " 0 cm).
For each of the three rows [(a), (b), and (c)]: (1) T! is shown on
the left, (2) membrane potential vs time for microelectrodes 1
through 6 (which correspond to x " 0 and 2 cm, respectively)
are shown in the left column (before control) and middle column
(during control), and (3) the right column shows APD values
computed from the six microelectrodes for the same alternate
beats before (top panels) and during (bottom panels) control.
During control, stimulation was adapted according to Eq. (1). In
the middle column, action potentials for which control failed to
eliminate alternans are shown in red and blue, while those in
which alternans was suppressed are shown in black.
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studies were approved by the Institutional Animal Care and
Use Committee of the Center for Research Animal
Resources at Cornell University. Pacing stimuli (2 ms du-
ration) were delivered to either end of the fiber via a bipolar
electrode. Action potentials were recorded [sampled at
1 kHz with 12-bit resolution [19] ] simultaneously from
6 sites along the fiber using standard microelectrode tech-
niques. Following 60 minutes of equilibration at a pacing
cycle length (T!) of 300 ms, T! was decreased progres-
sively by 10 ms decrements to induce alternans—concord-
ant (i.e., all spatial regions alternate in phase) at slower
pacing rates and discordant (i.e., distinct spatial regions
alternate out of phase) at faster pacing rates. The pacing
protocol subsequently was repeated with the application of
the control algorithm at each T!. Both the pacing and
control stimuli were applied to the same end of the fiber.

As in previous alternans control studies, the interstimu-
lus interval was adjusted for each stimulus according to:

Tn "
!
T! # !Tn if !Tn < 0;
T! if !Tn $ 0;

(1)

where

!Tn " %!=2&%An ' An'1&; (2)

T! is the pacing cycle length without control, ! is the
feedback gain (which typically ranged from 0.6 to 1.0,
and was held constant for the duration of each experiment),
A is the APD at the proximal microelectrode (‘‘Lead 1’’ in
Figs. 1 and 2) and n is the interval number. No significant
differences in the ability to control alternans were detected
for different ! values between 0.6 and 1.0.

The algorithm was similar to that used for control of
APD alternans in Refs. [14,17], although the approaches
used in those studies did not impose any conditions on
!Tn, (i.e., Tn " T! #!Tn for all !Tn). The conditions of
Eq. (1) were used in this study for two reasons. First, such
an implementation is more electrophysiologically realistic
than the unconditional approach. In an intact heart, in
which the underlying pacing is the result of native electro-
physiological activity rather than external stimulation, it is
not possible to prolong an interstimulus interval [13,20].
Second, algorithms using only negative perturbations have
been shown analytically to have a larger successful-control
regime than those that apply both positive and negative
perturbations [12,21]. However, a disadvantage of the for-
mer is that they achieve control slower (i.e., more beats are
required to suppress alternans after control is activated).

In this study, in the absence of control [as described in
detail previously [5,22,23] ], progressive shortening of T!
produces a stereotypical sequence of APD dynamics, in-
cluding a period-doubling bifurcation that initially takes
the form of concordant APD alternans and subsequently is
converted to discordant alternans at the shortest T!.
Examples of such uncontrolled dynamics are shown in
Fig. 1. They include: (1) concordant alternans at T! "

200 ms, during which APD for all sites on the fiber alter-
nate in phase [leftmost column of Fig. 1(a)]; (2) increased
magnitude of alternans at the site of stimulation at T! "
190 ms, with a reduction of alternans magnitude at more
distal sites [leftmost column of Fig. 1(b)]; (3) discordant
alternans at T! " 160 ms, during which the alternans of
APD at the proximal and distal ends of the fiber are out of
phase [leftmost column of Fig. 1(c)].
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FIG. 1 (color). Data from two consecutive action potentials
recorded from 6 microelectrodes spaced along the length of a
Purkinje fiber (Lead 1 is proximal; Lead 6 is distal) in one
representative control experiment. Stimulation was applied to
the proximal end of the fiber near microelectrode 1 (x " 0 cm).
For each of the three rows [(a), (b), and (c)]: (1) T! is shown on
the left, (2) membrane potential vs time for microelectrodes 1
through 6 (which correspond to x " 0 and 2 cm, respectively)
are shown in the left column (before control) and middle column
(during control), and (3) the right column shows APD values
computed from the six microelectrodes for the same alternate
beats before (top panels) and during (bottom panels) control.
During control, stimulation was adapted according to Eq. (1). In
the middle column, action potentials for which control failed to
eliminate alternans are shown in red and blue, while those in
which alternans was suppressed are shown in black.
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Alternans control works 
well in single cells but is 
only effective over ~1 cm 
in tissue.

studies were approved by the Institutional Animal Care and
Use Committee of the Center for Research Animal
Resources at Cornell University. Pacing stimuli (2 ms du-
ration) were delivered to either end of the fiber via a bipolar
electrode. Action potentials were recorded [sampled at
1 kHz with 12-bit resolution [19] ] simultaneously from
6 sites along the fiber using standard microelectrode tech-
niques. Following 60 minutes of equilibration at a pacing
cycle length (T!) of 300 ms, T! was decreased progres-
sively by 10 ms decrements to induce alternans—concord-
ant (i.e., all spatial regions alternate in phase) at slower
pacing rates and discordant (i.e., distinct spatial regions
alternate out of phase) at faster pacing rates. The pacing
protocol subsequently was repeated with the application of
the control algorithm at each T!. Both the pacing and
control stimuli were applied to the same end of the fiber.

As in previous alternans control studies, the interstimu-
lus interval was adjusted for each stimulus according to:

Tn "
!
T! # !Tn if !Tn < 0;
T! if !Tn $ 0;

(1)

where

!Tn " %!=2&%An ' An'1&; (2)

T! is the pacing cycle length without control, ! is the
feedback gain (which typically ranged from 0.6 to 1.0,
and was held constant for the duration of each experiment),
A is the APD at the proximal microelectrode (‘‘Lead 1’’ in
Figs. 1 and 2) and n is the interval number. No significant
differences in the ability to control alternans were detected
for different ! values between 0.6 and 1.0.

The algorithm was similar to that used for control of
APD alternans in Refs. [14,17], although the approaches
used in those studies did not impose any conditions on
!Tn, (i.e., Tn " T! #!Tn for all !Tn). The conditions of
Eq. (1) were used in this study for two reasons. First, such
an implementation is more electrophysiologically realistic
than the unconditional approach. In an intact heart, in
which the underlying pacing is the result of native electro-
physiological activity rather than external stimulation, it is
not possible to prolong an interstimulus interval [13,20].
Second, algorithms using only negative perturbations have
been shown analytically to have a larger successful-control
regime than those that apply both positive and negative
perturbations [12,21]. However, a disadvantage of the for-
mer is that they achieve control slower (i.e., more beats are
required to suppress alternans after control is activated).

In this study, in the absence of control [as described in
detail previously [5,22,23] ], progressive shortening of T!
produces a stereotypical sequence of APD dynamics, in-
cluding a period-doubling bifurcation that initially takes
the form of concordant APD alternans and subsequently is
converted to discordant alternans at the shortest T!.
Examples of such uncontrolled dynamics are shown in
Fig. 1. They include: (1) concordant alternans at T! "

200 ms, during which APD for all sites on the fiber alter-
nate in phase [leftmost column of Fig. 1(a)]; (2) increased
magnitude of alternans at the site of stimulation at T! "
190 ms, with a reduction of alternans magnitude at more
distal sites [leftmost column of Fig. 1(b)]; (3) discordant
alternans at T! " 160 ms, during which the alternans of
APD at the proximal and distal ends of the fiber are out of
phase [leftmost column of Fig. 1(c)].
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FIG. 1 (color). Data from two consecutive action potentials
recorded from 6 microelectrodes spaced along the length of a
Purkinje fiber (Lead 1 is proximal; Lead 6 is distal) in one
representative control experiment. Stimulation was applied to
the proximal end of the fiber near microelectrode 1 (x " 0 cm).
For each of the three rows [(a), (b), and (c)]: (1) T! is shown on
the left, (2) membrane potential vs time for microelectrodes 1
through 6 (which correspond to x " 0 and 2 cm, respectively)
are shown in the left column (before control) and middle column
(during control), and (3) the right column shows APD values
computed from the six microelectrodes for the same alternate
beats before (top panels) and during (bottom panels) control.
During control, stimulation was adapted according to Eq. (1). In
the middle column, action potentials for which control failed to
eliminate alternans are shown in red and blue, while those in
which alternans was suppressed are shown in black.
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niques. Following 60 minutes of equilibration at a pacing
cycle length (T!) of 300 ms, T! was decreased progres-
sively by 10 ms decrements to induce alternans—concord-
ant (i.e., all spatial regions alternate in phase) at slower
pacing rates and discordant (i.e., distinct spatial regions
alternate out of phase) at faster pacing rates. The pacing
protocol subsequently was repeated with the application of
the control algorithm at each T!. Both the pacing and
control stimuli were applied to the same end of the fiber.

As in previous alternans control studies, the interstimu-
lus interval was adjusted for each stimulus according to:

Tn "
!
T! # !Tn if !Tn < 0;
T! if !Tn $ 0;

(1)

where

!Tn " %!=2&%An ' An'1&; (2)

T! is the pacing cycle length without control, ! is the
feedback gain (which typically ranged from 0.6 to 1.0,
and was held constant for the duration of each experiment),
A is the APD at the proximal microelectrode (‘‘Lead 1’’ in
Figs. 1 and 2) and n is the interval number. No significant
differences in the ability to control alternans were detected
for different ! values between 0.6 and 1.0.

The algorithm was similar to that used for control of
APD alternans in Refs. [14,17], although the approaches
used in those studies did not impose any conditions on
!Tn, (i.e., Tn " T! #!Tn for all !Tn). The conditions of
Eq. (1) were used in this study for two reasons. First, such
an implementation is more electrophysiologically realistic
than the unconditional approach. In an intact heart, in
which the underlying pacing is the result of native electro-
physiological activity rather than external stimulation, it is
not possible to prolong an interstimulus interval [13,20].
Second, algorithms using only negative perturbations have
been shown analytically to have a larger successful-control
regime than those that apply both positive and negative
perturbations [12,21]. However, a disadvantage of the for-
mer is that they achieve control slower (i.e., more beats are
required to suppress alternans after control is activated).

In this study, in the absence of control [as described in
detail previously [5,22,23] ], progressive shortening of T!
produces a stereotypical sequence of APD dynamics, in-
cluding a period-doubling bifurcation that initially takes
the form of concordant APD alternans and subsequently is
converted to discordant alternans at the shortest T!.
Examples of such uncontrolled dynamics are shown in
Fig. 1. They include: (1) concordant alternans at T! "

200 ms, during which APD for all sites on the fiber alter-
nate in phase [leftmost column of Fig. 1(a)]; (2) increased
magnitude of alternans at the site of stimulation at T! "
190 ms, with a reduction of alternans magnitude at more
distal sites [leftmost column of Fig. 1(b)]; (3) discordant
alternans at T! " 160 ms, during which the alternans of
APD at the proximal and distal ends of the fiber are out of
phase [leftmost column of Fig. 1(c)].
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FIG. 1 (color). Data from two consecutive action potentials
recorded from 6 microelectrodes spaced along the length of a
Purkinje fiber (Lead 1 is proximal; Lead 6 is distal) in one
representative control experiment. Stimulation was applied to
the proximal end of the fiber near microelectrode 1 (x " 0 cm).
For each of the three rows [(a), (b), and (c)]: (1) T! is shown on
the left, (2) membrane potential vs time for microelectrodes 1
through 6 (which correspond to x " 0 and 2 cm, respectively)
are shown in the left column (before control) and middle column
(during control), and (3) the right column shows APD values
computed from the six microelectrodes for the same alternate
beats before (top panels) and during (bottom panels) control.
During control, stimulation was adapted according to Eq. (1). In
the middle column, action potentials for which control failed to
eliminate alternans are shown in red and blue, while those in
which alternans was suppressed are shown in black.
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studies were approved by the Institutional Animal Care and
Use Committee of the Center for Research Animal
Resources at Cornell University. Pacing stimuli (2 ms du-
ration) were delivered to either end of the fiber via a bipolar
electrode. Action potentials were recorded [sampled at
1 kHz with 12-bit resolution [19] ] simultaneously from
6 sites along the fiber using standard microelectrode tech-
niques. Following 60 minutes of equilibration at a pacing
cycle length (T!) of 300 ms, T! was decreased progres-
sively by 10 ms decrements to induce alternans—concord-
ant (i.e., all spatial regions alternate in phase) at slower
pacing rates and discordant (i.e., distinct spatial regions
alternate out of phase) at faster pacing rates. The pacing
protocol subsequently was repeated with the application of
the control algorithm at each T!. Both the pacing and
control stimuli were applied to the same end of the fiber.

As in previous alternans control studies, the interstimu-
lus interval was adjusted for each stimulus according to:

Tn "
!
T! # !Tn if !Tn < 0;
T! if !Tn $ 0;

(1)

where

!Tn " %!=2&%An ' An'1&; (2)

T! is the pacing cycle length without control, ! is the
feedback gain (which typically ranged from 0.6 to 1.0,
and was held constant for the duration of each experiment),
A is the APD at the proximal microelectrode (‘‘Lead 1’’ in
Figs. 1 and 2) and n is the interval number. No significant
differences in the ability to control alternans were detected
for different ! values between 0.6 and 1.0.

The algorithm was similar to that used for control of
APD alternans in Refs. [14,17], although the approaches
used in those studies did not impose any conditions on
!Tn, (i.e., Tn " T! #!Tn for all !Tn). The conditions of
Eq. (1) were used in this study for two reasons. First, such
an implementation is more electrophysiologically realistic
than the unconditional approach. In an intact heart, in
which the underlying pacing is the result of native electro-
physiological activity rather than external stimulation, it is
not possible to prolong an interstimulus interval [13,20].
Second, algorithms using only negative perturbations have
been shown analytically to have a larger successful-control
regime than those that apply both positive and negative
perturbations [12,21]. However, a disadvantage of the for-
mer is that they achieve control slower (i.e., more beats are
required to suppress alternans after control is activated).

In this study, in the absence of control [as described in
detail previously [5,22,23] ], progressive shortening of T!
produces a stereotypical sequence of APD dynamics, in-
cluding a period-doubling bifurcation that initially takes
the form of concordant APD alternans and subsequently is
converted to discordant alternans at the shortest T!.
Examples of such uncontrolled dynamics are shown in
Fig. 1. They include: (1) concordant alternans at T! "

200 ms, during which APD for all sites on the fiber alter-
nate in phase [leftmost column of Fig. 1(a)]; (2) increased
magnitude of alternans at the site of stimulation at T! "
190 ms, with a reduction of alternans magnitude at more
distal sites [leftmost column of Fig. 1(b)]; (3) discordant
alternans at T! " 160 ms, during which the alternans of
APD at the proximal and distal ends of the fiber are out of
phase [leftmost column of Fig. 1(c)].

Lead 1

2

3

4

5

6

150 ms 150 ms

Lead 1

2

3

4

5

6

Lead 1

Control Off

4

5

6

Control On

3

2

T * =
 2

00
 m

s
T *= 

19
0 

m
s

T *= 
16

0 
m

s

80

0 2

16
0

-- beat n
-- beat n+1

80
16

0

0 2

0 2

Distance (cm)

80
16

0
80

16
0

8 0
16

0
8 0

16
0

A
P

D
 (

m
s
)

a

b

c

FIG. 1 (color). Data from two consecutive action potentials
recorded from 6 microelectrodes spaced along the length of a
Purkinje fiber (Lead 1 is proximal; Lead 6 is distal) in one
representative control experiment. Stimulation was applied to
the proximal end of the fiber near microelectrode 1 (x " 0 cm).
For each of the three rows [(a), (b), and (c)]: (1) T! is shown on
the left, (2) membrane potential vs time for microelectrodes 1
through 6 (which correspond to x " 0 and 2 cm, respectively)
are shown in the left column (before control) and middle column
(during control), and (3) the right column shows APD values
computed from the six microelectrodes for the same alternate
beats before (top panels) and during (bottom panels) control.
During control, stimulation was adapted according to Eq. (1). In
the middle column, action potentials for which control failed to
eliminate alternans are shown in red and blue, while those in
which alternans was suppressed are shown in black.
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Resources at Cornell University. Pacing stimuli (2 ms du-
ration) were delivered to either end of the fiber via a bipolar
electrode. Action potentials were recorded [sampled at
1 kHz with 12-bit resolution [19] ] simultaneously from
6 sites along the fiber using standard microelectrode tech-
niques. Following 60 minutes of equilibration at a pacing
cycle length (T!) of 300 ms, T! was decreased progres-
sively by 10 ms decrements to induce alternans—concord-
ant (i.e., all spatial regions alternate in phase) at slower
pacing rates and discordant (i.e., distinct spatial regions
alternate out of phase) at faster pacing rates. The pacing
protocol subsequently was repeated with the application of
the control algorithm at each T!. Both the pacing and
control stimuli were applied to the same end of the fiber.

As in previous alternans control studies, the interstimu-
lus interval was adjusted for each stimulus according to:

Tn "
!
T! # !Tn if !Tn < 0;
T! if !Tn $ 0;

(1)

where

!Tn " %!=2&%An ' An'1&; (2)

T! is the pacing cycle length without control, ! is the
feedback gain (which typically ranged from 0.6 to 1.0,
and was held constant for the duration of each experiment),
A is the APD at the proximal microelectrode (‘‘Lead 1’’ in
Figs. 1 and 2) and n is the interval number. No significant
differences in the ability to control alternans were detected
for different ! values between 0.6 and 1.0.

The algorithm was similar to that used for control of
APD alternans in Refs. [14,17], although the approaches
used in those studies did not impose any conditions on
!Tn, (i.e., Tn " T! #!Tn for all !Tn). The conditions of
Eq. (1) were used in this study for two reasons. First, such
an implementation is more electrophysiologically realistic
than the unconditional approach. In an intact heart, in
which the underlying pacing is the result of native electro-
physiological activity rather than external stimulation, it is
not possible to prolong an interstimulus interval [13,20].
Second, algorithms using only negative perturbations have
been shown analytically to have a larger successful-control
regime than those that apply both positive and negative
perturbations [12,21]. However, a disadvantage of the for-
mer is that they achieve control slower (i.e., more beats are
required to suppress alternans after control is activated).

In this study, in the absence of control [as described in
detail previously [5,22,23] ], progressive shortening of T!
produces a stereotypical sequence of APD dynamics, in-
cluding a period-doubling bifurcation that initially takes
the form of concordant APD alternans and subsequently is
converted to discordant alternans at the shortest T!.
Examples of such uncontrolled dynamics are shown in
Fig. 1. They include: (1) concordant alternans at T! "

200 ms, during which APD for all sites on the fiber alter-
nate in phase [leftmost column of Fig. 1(a)]; (2) increased
magnitude of alternans at the site of stimulation at T! "
190 ms, with a reduction of alternans magnitude at more
distal sites [leftmost column of Fig. 1(b)]; (3) discordant
alternans at T! " 160 ms, during which the alternans of
APD at the proximal and distal ends of the fiber are out of
phase [leftmost column of Fig. 1(c)].
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FIG. 1 (color). Data from two consecutive action potentials
recorded from 6 microelectrodes spaced along the length of a
Purkinje fiber (Lead 1 is proximal; Lead 6 is distal) in one
representative control experiment. Stimulation was applied to
the proximal end of the fiber near microelectrode 1 (x " 0 cm).
For each of the three rows [(a), (b), and (c)]: (1) T! is shown on
the left, (2) membrane potential vs time for microelectrodes 1
through 6 (which correspond to x " 0 and 2 cm, respectively)
are shown in the left column (before control) and middle column
(during control), and (3) the right column shows APD values
computed from the six microelectrodes for the same alternate
beats before (top panels) and during (bottom panels) control.
During control, stimulation was adapted according to Eq. (1). In
the middle column, action potentials for which control failed to
eliminate alternans are shown in red and blue, while those in
which alternans was suppressed are shown in black.
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Resources at Cornell University. Pacing stimuli (2 ms du-
ration) were delivered to either end of the fiber via a bipolar
electrode. Action potentials were recorded [sampled at
1 kHz with 12-bit resolution [19] ] simultaneously from
6 sites along the fiber using standard microelectrode tech-
niques. Following 60 minutes of equilibration at a pacing
cycle length (T!) of 300 ms, T! was decreased progres-
sively by 10 ms decrements to induce alternans—concord-
ant (i.e., all spatial regions alternate in phase) at slower
pacing rates and discordant (i.e., distinct spatial regions
alternate out of phase) at faster pacing rates. The pacing
protocol subsequently was repeated with the application of
the control algorithm at each T!. Both the pacing and
control stimuli were applied to the same end of the fiber.

As in previous alternans control studies, the interstimu-
lus interval was adjusted for each stimulus according to:

Tn "
!
T! # !Tn if !Tn < 0;
T! if !Tn $ 0;

(1)

where

!Tn " %!=2&%An ' An'1&; (2)

T! is the pacing cycle length without control, ! is the
feedback gain (which typically ranged from 0.6 to 1.0,
and was held constant for the duration of each experiment),
A is the APD at the proximal microelectrode (‘‘Lead 1’’ in
Figs. 1 and 2) and n is the interval number. No significant
differences in the ability to control alternans were detected
for different ! values between 0.6 and 1.0.

The algorithm was similar to that used for control of
APD alternans in Refs. [14,17], although the approaches
used in those studies did not impose any conditions on
!Tn, (i.e., Tn " T! #!Tn for all !Tn). The conditions of
Eq. (1) were used in this study for two reasons. First, such
an implementation is more electrophysiologically realistic
than the unconditional approach. In an intact heart, in
which the underlying pacing is the result of native electro-
physiological activity rather than external stimulation, it is
not possible to prolong an interstimulus interval [13,20].
Second, algorithms using only negative perturbations have
been shown analytically to have a larger successful-control
regime than those that apply both positive and negative
perturbations [12,21]. However, a disadvantage of the for-
mer is that they achieve control slower (i.e., more beats are
required to suppress alternans after control is activated).

In this study, in the absence of control [as described in
detail previously [5,22,23] ], progressive shortening of T!
produces a stereotypical sequence of APD dynamics, in-
cluding a period-doubling bifurcation that initially takes
the form of concordant APD alternans and subsequently is
converted to discordant alternans at the shortest T!.
Examples of such uncontrolled dynamics are shown in
Fig. 1. They include: (1) concordant alternans at T! "

200 ms, during which APD for all sites on the fiber alter-
nate in phase [leftmost column of Fig. 1(a)]; (2) increased
magnitude of alternans at the site of stimulation at T! "
190 ms, with a reduction of alternans magnitude at more
distal sites [leftmost column of Fig. 1(b)]; (3) discordant
alternans at T! " 160 ms, during which the alternans of
APD at the proximal and distal ends of the fiber are out of
phase [leftmost column of Fig. 1(c)].
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FIG. 1 (color). Data from two consecutive action potentials
recorded from 6 microelectrodes spaced along the length of a
Purkinje fiber (Lead 1 is proximal; Lead 6 is distal) in one
representative control experiment. Stimulation was applied to
the proximal end of the fiber near microelectrode 1 (x " 0 cm).
For each of the three rows [(a), (b), and (c)]: (1) T! is shown on
the left, (2) membrane potential vs time for microelectrodes 1
through 6 (which correspond to x " 0 and 2 cm, respectively)
are shown in the left column (before control) and middle column
(during control), and (3) the right column shows APD values
computed from the six microelectrodes for the same alternate
beats before (top panels) and during (bottom panels) control.
During control, stimulation was adapted according to Eq. (1). In
the middle column, action potentials for which control failed to
eliminate alternans are shown in red and blue, while those in
which alternans was suppressed are shown in black.
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studies were approved by the Institutional Animal Care and
Use Committee of the Center for Research Animal
Resources at Cornell University. Pacing stimuli (2 ms du-
ration) were delivered to either end of the fiber via a bipolar
electrode. Action potentials were recorded [sampled at
1 kHz with 12-bit resolution [19] ] simultaneously from
6 sites along the fiber using standard microelectrode tech-
niques. Following 60 minutes of equilibration at a pacing
cycle length (T!) of 300 ms, T! was decreased progres-
sively by 10 ms decrements to induce alternans—concord-
ant (i.e., all spatial regions alternate in phase) at slower
pacing rates and discordant (i.e., distinct spatial regions
alternate out of phase) at faster pacing rates. The pacing
protocol subsequently was repeated with the application of
the control algorithm at each T!. Both the pacing and
control stimuli were applied to the same end of the fiber.

As in previous alternans control studies, the interstimu-
lus interval was adjusted for each stimulus according to:

Tn "
!
T! # !Tn if !Tn < 0;
T! if !Tn $ 0;

(1)

where

!Tn " %!=2&%An ' An'1&; (2)

T! is the pacing cycle length without control, ! is the
feedback gain (which typically ranged from 0.6 to 1.0,
and was held constant for the duration of each experiment),
A is the APD at the proximal microelectrode (‘‘Lead 1’’ in
Figs. 1 and 2) and n is the interval number. No significant
differences in the ability to control alternans were detected
for different ! values between 0.6 and 1.0.

The algorithm was similar to that used for control of
APD alternans in Refs. [14,17], although the approaches
used in those studies did not impose any conditions on
!Tn, (i.e., Tn " T! #!Tn for all !Tn). The conditions of
Eq. (1) were used in this study for two reasons. First, such
an implementation is more electrophysiologically realistic
than the unconditional approach. In an intact heart, in
which the underlying pacing is the result of native electro-
physiological activity rather than external stimulation, it is
not possible to prolong an interstimulus interval [13,20].
Second, algorithms using only negative perturbations have
been shown analytically to have a larger successful-control
regime than those that apply both positive and negative
perturbations [12,21]. However, a disadvantage of the for-
mer is that they achieve control slower (i.e., more beats are
required to suppress alternans after control is activated).

In this study, in the absence of control [as described in
detail previously [5,22,23] ], progressive shortening of T!
produces a stereotypical sequence of APD dynamics, in-
cluding a period-doubling bifurcation that initially takes
the form of concordant APD alternans and subsequently is
converted to discordant alternans at the shortest T!.
Examples of such uncontrolled dynamics are shown in
Fig. 1. They include: (1) concordant alternans at T! "

200 ms, during which APD for all sites on the fiber alter-
nate in phase [leftmost column of Fig. 1(a)]; (2) increased
magnitude of alternans at the site of stimulation at T! "
190 ms, with a reduction of alternans magnitude at more
distal sites [leftmost column of Fig. 1(b)]; (3) discordant
alternans at T! " 160 ms, during which the alternans of
APD at the proximal and distal ends of the fiber are out of
phase [leftmost column of Fig. 1(c)].

Lead 1

2

3

4

5

6

150 ms 150 ms

Lead 1

2

3

4

5

6

Lead 1

Control Off

4

5

6

Control On

3

2

T * =
 2

00
 m

s
T *= 

19
0 

m
s

T *= 
16

0 
m

s

80

0 2

16
0

-- beat n
-- beat n+1

80
16

0

0 2

0 2

Distance (cm)

80
16

0
80

16
0

8 0
16

0
8 0

16
0

A
P

D
 (

m
s
)

a

b

c

FIG. 1 (color). Data from two consecutive action potentials
recorded from 6 microelectrodes spaced along the length of a
Purkinje fiber (Lead 1 is proximal; Lead 6 is distal) in one
representative control experiment. Stimulation was applied to
the proximal end of the fiber near microelectrode 1 (x " 0 cm).
For each of the three rows [(a), (b), and (c)]: (1) T! is shown on
the left, (2) membrane potential vs time for microelectrodes 1
through 6 (which correspond to x " 0 and 2 cm, respectively)
are shown in the left column (before control) and middle column
(during control), and (3) the right column shows APD values
computed from the six microelectrodes for the same alternate
beats before (top panels) and during (bottom panels) control.
During control, stimulation was adapted according to Eq. (1). In
the middle column, action potentials for which control failed to
eliminate alternans are shown in red and blue, while those in
which alternans was suppressed are shown in black.
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Resources at Cornell University. Pacing stimuli (2 ms du-
ration) were delivered to either end of the fiber via a bipolar
electrode. Action potentials were recorded [sampled at
1 kHz with 12-bit resolution [19] ] simultaneously from
6 sites along the fiber using standard microelectrode tech-
niques. Following 60 minutes of equilibration at a pacing
cycle length (T!) of 300 ms, T! was decreased progres-
sively by 10 ms decrements to induce alternans—concord-
ant (i.e., all spatial regions alternate in phase) at slower
pacing rates and discordant (i.e., distinct spatial regions
alternate out of phase) at faster pacing rates. The pacing
protocol subsequently was repeated with the application of
the control algorithm at each T!. Both the pacing and
control stimuli were applied to the same end of the fiber.

As in previous alternans control studies, the interstimu-
lus interval was adjusted for each stimulus according to:

Tn "
!
T! # !Tn if !Tn < 0;
T! if !Tn $ 0;

(1)

where

!Tn " %!=2&%An ' An'1&; (2)

T! is the pacing cycle length without control, ! is the
feedback gain (which typically ranged from 0.6 to 1.0,
and was held constant for the duration of each experiment),
A is the APD at the proximal microelectrode (‘‘Lead 1’’ in
Figs. 1 and 2) and n is the interval number. No significant
differences in the ability to control alternans were detected
for different ! values between 0.6 and 1.0.

The algorithm was similar to that used for control of
APD alternans in Refs. [14,17], although the approaches
used in those studies did not impose any conditions on
!Tn, (i.e., Tn " T! #!Tn for all !Tn). The conditions of
Eq. (1) were used in this study for two reasons. First, such
an implementation is more electrophysiologically realistic
than the unconditional approach. In an intact heart, in
which the underlying pacing is the result of native electro-
physiological activity rather than external stimulation, it is
not possible to prolong an interstimulus interval [13,20].
Second, algorithms using only negative perturbations have
been shown analytically to have a larger successful-control
regime than those that apply both positive and negative
perturbations [12,21]. However, a disadvantage of the for-
mer is that they achieve control slower (i.e., more beats are
required to suppress alternans after control is activated).

In this study, in the absence of control [as described in
detail previously [5,22,23] ], progressive shortening of T!
produces a stereotypical sequence of APD dynamics, in-
cluding a period-doubling bifurcation that initially takes
the form of concordant APD alternans and subsequently is
converted to discordant alternans at the shortest T!.
Examples of such uncontrolled dynamics are shown in
Fig. 1. They include: (1) concordant alternans at T! "

200 ms, during which APD for all sites on the fiber alter-
nate in phase [leftmost column of Fig. 1(a)]; (2) increased
magnitude of alternans at the site of stimulation at T! "
190 ms, with a reduction of alternans magnitude at more
distal sites [leftmost column of Fig. 1(b)]; (3) discordant
alternans at T! " 160 ms, during which the alternans of
APD at the proximal and distal ends of the fiber are out of
phase [leftmost column of Fig. 1(c)].

Lead 1

2

3

4

5

6

150 ms 150 ms

Lead 1

2

3

4

5

6

Lead 1

Control Off

4

5

6

Control On

3

2

T * =
 2

00
 m

s
T *= 

19
0 

m
s

T *= 
16

0 
m

s

80

0 2

16
0

-- beat n
-- beat n+1

80
16

0

0 2

0 2

Distance (cm)

80
16

0
80

16
0

8 0
16

0
8 0

16
0

A
P

D
 (

m
s
)

a

b

c

FIG. 1 (color). Data from two consecutive action potentials
recorded from 6 microelectrodes spaced along the length of a
Purkinje fiber (Lead 1 is proximal; Lead 6 is distal) in one
representative control experiment. Stimulation was applied to
the proximal end of the fiber near microelectrode 1 (x " 0 cm).
For each of the three rows [(a), (b), and (c)]: (1) T! is shown on
the left, (2) membrane potential vs time for microelectrodes 1
through 6 (which correspond to x " 0 and 2 cm, respectively)
are shown in the left column (before control) and middle column
(during control), and (3) the right column shows APD values
computed from the six microelectrodes for the same alternate
beats before (top panels) and during (bottom panels) control.
During control, stimulation was adapted according to Eq. (1). In
the middle column, action potentials for which control failed to
eliminate alternans are shown in red and blue, while those in
which alternans was suppressed are shown in black.
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Use Committee of the Center for Research Animal
Resources at Cornell University. Pacing stimuli (2 ms du-
ration) were delivered to either end of the fiber via a bipolar
electrode. Action potentials were recorded [sampled at
1 kHz with 12-bit resolution [19] ] simultaneously from
6 sites along the fiber using standard microelectrode tech-
niques. Following 60 minutes of equilibration at a pacing
cycle length (T!) of 300 ms, T! was decreased progres-
sively by 10 ms decrements to induce alternans—concord-
ant (i.e., all spatial regions alternate in phase) at slower
pacing rates and discordant (i.e., distinct spatial regions
alternate out of phase) at faster pacing rates. The pacing
protocol subsequently was repeated with the application of
the control algorithm at each T!. Both the pacing and
control stimuli were applied to the same end of the fiber.

As in previous alternans control studies, the interstimu-
lus interval was adjusted for each stimulus according to:

Tn "
!
T! # !Tn if !Tn < 0;
T! if !Tn $ 0;

(1)

where

!Tn " %!=2&%An ' An'1&; (2)

T! is the pacing cycle length without control, ! is the
feedback gain (which typically ranged from 0.6 to 1.0,
and was held constant for the duration of each experiment),
A is the APD at the proximal microelectrode (‘‘Lead 1’’ in
Figs. 1 and 2) and n is the interval number. No significant
differences in the ability to control alternans were detected
for different ! values between 0.6 and 1.0.

The algorithm was similar to that used for control of
APD alternans in Refs. [14,17], although the approaches
used in those studies did not impose any conditions on
!Tn, (i.e., Tn " T! #!Tn for all !Tn). The conditions of
Eq. (1) were used in this study for two reasons. First, such
an implementation is more electrophysiologically realistic
than the unconditional approach. In an intact heart, in
which the underlying pacing is the result of native electro-
physiological activity rather than external stimulation, it is
not possible to prolong an interstimulus interval [13,20].
Second, algorithms using only negative perturbations have
been shown analytically to have a larger successful-control
regime than those that apply both positive and negative
perturbations [12,21]. However, a disadvantage of the for-
mer is that they achieve control slower (i.e., more beats are
required to suppress alternans after control is activated).

In this study, in the absence of control [as described in
detail previously [5,22,23] ], progressive shortening of T!
produces a stereotypical sequence of APD dynamics, in-
cluding a period-doubling bifurcation that initially takes
the form of concordant APD alternans and subsequently is
converted to discordant alternans at the shortest T!.
Examples of such uncontrolled dynamics are shown in
Fig. 1. They include: (1) concordant alternans at T! "

200 ms, during which APD for all sites on the fiber alter-
nate in phase [leftmost column of Fig. 1(a)]; (2) increased
magnitude of alternans at the site of stimulation at T! "
190 ms, with a reduction of alternans magnitude at more
distal sites [leftmost column of Fig. 1(b)]; (3) discordant
alternans at T! " 160 ms, during which the alternans of
APD at the proximal and distal ends of the fiber are out of
phase [leftmost column of Fig. 1(c)].
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FIG. 1 (color). Data from two consecutive action potentials
recorded from 6 microelectrodes spaced along the length of a
Purkinje fiber (Lead 1 is proximal; Lead 6 is distal) in one
representative control experiment. Stimulation was applied to
the proximal end of the fiber near microelectrode 1 (x " 0 cm).
For each of the three rows [(a), (b), and (c)]: (1) T! is shown on
the left, (2) membrane potential vs time for microelectrodes 1
through 6 (which correspond to x " 0 and 2 cm, respectively)
are shown in the left column (before control) and middle column
(during control), and (3) the right column shows APD values
computed from the six microelectrodes for the same alternate
beats before (top panels) and during (bottom panels) control.
During control, stimulation was adapted according to Eq. (1). In
the middle column, action potentials for which control failed to
eliminate alternans are shown in red and blue, while those in
which alternans was suppressed are shown in black.
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Summary

• The cardiac action potential is generated by diffusion of 
ions through specific ion channels in the cell membrane

• Voltage-gated channel dynamics may be described 
quantitatively by HH-type equations or by Markov 
models

• Computational models can be used to explain 
mechanisms of experimentally or clinically observed 
phenomena




