Models of visual neuron
function

Quantitative Biology Course Lecture
Dan Butts




What is the “neural code"?
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Electrical activity: nerve impulses




ow does neural activity
relate to brain function?

WWell characterized
Use visual system:
Intuitive function

Lateral Geniculate Nucleus bopulation input to th ;
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Starting point: recordings in the LGN

1. Still relatively simple non-linear
transforms on stimulus
2. Population input to the visual corte

The Visual
Cortex
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Visual stimulus

“Cat-cam’ movies
from Peter
Koenig’s Lab

(Kayser et al, 2004)




LGN neuron responses




Understanding and Decoding Neural Signals




Outline

1. Introduction to “receptive fields”




Coding like the muscle

Muscle picture
with motoneuron

Little
contraction

Lots of
contraction




The receptive field

LGN
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LGN responses related to how
much the stimulus matches the
receptive field

Linear comparison:
Spatial stimulus R = Z K¢, (Z) S(Z)




The receptive field
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receptive field

Linear comparison:
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The receptive field

LGN
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Spatial features of image
matter in relation to RF

Neuron is tuned for a given
stimulus over a certain range.

Spatial stimulus



Circuitry of the retina
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...but vision involves
motion

Motion in the
, Eye movements
visual scene/ .
. ® saccades, MICrosac.
self motion

e ocular drift




LGN response during movie
Raster plot

PSTH: peri-stimulus time histogram
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Visual neuron function: the
spatiotemporal receptive field

What stimuli are represented

by a neurons response? | Bl 5 FEE E b

Spike-Triggered Average (STA)
stimulus: “receptive field”

-200 ms -100




Visual neuron function: the
spatiotemporal receptive field

What stimuli are represented

by a neuronis response? PEEDE  HEEETE TH
1 |

Spike-Triggered Average (STA)
stimulus: “receptive field”
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Implicit Problems with Modeling

> Too many parameters
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The “temporal receptive field”

Spatiotemporal Stimuli
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Full-field stimuli




Outline

2. Building a visual neuron model

The LN (Linear-Non-linear) model




The “temporal receptive field”

Full-field stimuli




How measure the receptive field?
The spike-triggered average

Full-field stimuli
ﬂ
=1

Stimulus-response cross-correlation

k(1) /dt r(t)s(t —7)
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Linear model predictions

100 150 200 250 ms

Temporal Stimulus
(full-field)
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Mathematical result

(take functional derivative of MSE)

Layman’s summary:

In the presence of Gaussian noise (uncorrelated)
stimuli, the best linear model for the neuron is
proportional to the spike triggered average.

rest(t) = 10 /dT k(T)s(t—T)

Mean Squared Error (MSE) Stimulus-response cross-correlation
MSE = S 0r(t) — rest(8) k(7) o / dt v (1) s(t — 7)
t



Linear model predictions

100 150 200 250 ms

Temporal Stimulus
(full-field)
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“LN” (Linear-Non-Linear) model of encoding
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Measuring reliability of RF “model™:
the non-linearity




Measuring reliability of RF “model™:
the non-linearity
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Bussgang’s Theorem

Layman’s summary:
In the context of simple non-linearities, the “optima

receptive field is STIL given by the spike-triggered
average in the context of Gaussian white noise ***

I”




Receptive field predictions
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How quantify quality of model fit?

Matlab Interlude




Problems with visval neuron
modeling

|. Looking at higher time resolution reveals that
the LN model is insufficient

2. Non-linearities “force” the use of Bussgang’s
theorem -> only use STA, and need noise stimuli

3. r2 is not the best measure for evaluating a non-
linear system

(also, it requires multiple repeats to estimate a good firing rate)



Outline

3. The problem of temporal precision and the need for
new statistical methods

Maximum-likelihood modeling




Maximum Likelihood Approach

Stimulus
 HNE & EEE
Likelihood: probability that model explains data

inear Kernel
Find the "maximum likelihood™:

The probability that the spikes were generated
by a model with a certain choice of parameters

LL = Z log Pr{spk|tspr} — Z Pr{spk|t}
/ f tspk / /
Firing rate when there

Firing rate when there
P oisson is no observed spike
process

is an observed spike

Y W W

(Spike Train)

Probability
of spike




Problem: complicated function to
maximize!

 HEE = EEE

The maximum likelihood:

inear Kernel

LL = Z log Pr{spk|tspr} — Z Pr{spk|t}
tapk t

Non-linearity
/ PANINSKI (2004):
J

No local minima in likelihood surface given
Poisson
process

certain forms of non-linearity (f)
11 |

Matlab can solve for optimal
parameters in very little time!

[e.g., 2 minutes of data, 0.5 ms resolution

Response ~ 20 seconds]
(Spike Train)




LN wmodel is fit ‘optimally” using
maximuw likelihood

Quick Matlab Interlude




Outline

4. Research: Application of maximum-likelihood modeling
to explain precise timing of neuronal responses



Receptive field predictions
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Receptive field predictions

Neuron's Response
Spike Rasters

"Function-based" Prediction
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How to generate precision?

500

Neuron is “tuned”
to the stimulus
O 1 1

Need to “suppress” neurons response during
periods of stimulus that maftches RF

Refractoriness and
Neural Precision

e.g., Berry and Meister, 1998
Brillinger, 1992

Keat et al., 2001 30 ms
Paninski, 2004 !
Pillow et al., 2005




Generalized Linear Model (GLM)

Stimulus
HEE N EEN |

PANINSKI (2004):

inear Kernel

Optimal solution for model parameters
(no matter how many parameters!)

Spike History
Term

But, spike history term does not explain the

temporal resolution of the data.

P oisson
process

Response
(Spike Train)




riring Kkate (riz)

GLM model does not explain
LGN temporal precision

Despite matching

Data (60 reps x-validated) IS| distributions
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What about “network” suppression?

Refractoriness and
precision model
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Refractoriness and
precision model
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What about “network” suppression?

Network suppression

model
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Directly fit *wmultiple* receptive fields

S IVHVES
HEE B EEN |

-- Alternative to spike-
triggered covariance

Rectified) -- Simplest way to

Suppression

— incorporate two RFs
pike
generation

v

-- Application to neurons

LN that process stimuli

Response

(Spike Train) non-linearly (e.g., on-of f
cells in mouse retina)




“Precision” explained by suppression

Data (60 reps x-validated)

LN

GLM

Suppression
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Cross-validation

Fit model to 2 min Model| test
2 minutes of FF 30 sec unique sequence
stimulation repeated 60 times

Significant improvewment across all recorded nevrons
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Precision computation =
| v 4

Linear Filter 1 RF, n RF,
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General role of local inhibition?

AN A

Retina

Exc: bipolar cell

Exc: LGN input
£ LGN

+ Exc: RGC input

local inhibitory
'\ interneuron
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Conclusions/Parting Thoughts

1. Visual neuron modeling

e Dont forget the LN model -- it is everywhere
e Basis for sensory models in neuroscience (“minimal model”)

2. Neuroscience has been (but no longer is?) stuck with
standard statistics

e Brought field fo where it is (VERY USEFUL) but ... could not go much further
e Neuroscience-statisticians are having large impact on basic science
(Emory Brown, Liam Paninski, Rob Kass, Valerie Ventura, Han Amarsingham,... )

3. Maximum likelihood modeling

e System of models that have smooth likelihood surface
e Ability to solve higher-order models with limited data
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