Quantitative Understanding in Biology
Module I: Statistics

Lecture III: Confidence Intervals and
Contingency Tables

Reporting the confidence interval of the mean of a univariate distribution is an intuitive way of
conveying how sure you are about the mean. Cls are especially useful when reporting derived
quantities, such as the difference between two means. For example, you can report the difference in the
mean blood pressures of a treated and untreated group as a confidence interval. If this Cl includes zero,
you could not conclude that your treatment was effective.

You can also test hypotheses (such as “treatment influences blood pressure”) by performing formal
statistical tests that compute p-values; this will be the subject of the next session.

Confidence Interval of a Mean
We begin by considering the Cl of a simple mean. We saw earlier:

95% Cl: X + 1.96 SEM for large N

More generally,
(1-a)Cl:xtt* - SEM

Where t’ is a function of a and N. In the literature, t"is known as the Student’s t distribution. It is
expressed as a function of a and a number of degrees of freedom (df). In the case of a single, univariate
distribution, df = N —1.

The following function in R will compute t* for a univariate distribution:

t.star <- function(n, confidence = 0.95) {
qt (0.5 * (1 + confidence), n-1)

vV + + V

t.star(c(5, 50, 1000))

[1] 2.776445 2.009575 1.962341

> t.star(c(5, 50, 1000), confidence = 0.99)
[1] 4.604095 2.679952 2.580760

As you might expect, as the confidence that you require increases, t* increases: the more sure you want
to be of your answer, the wider a Cl you need. Also, as N increases, t* decreases: the more data you
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have, the less uncertainty in your results. For a = 0.05 (i.e., 95% confidence) and large N, t* = 1.96. For a
=0.05 and moderate N, t* = 2.

Confidence Interval of a Difference Between Two Means

Experiments ought to have controls, so you’ll often find yourself computing not just the mean of a set of
values, but the difference between the mean of a control group and a test group. To compute the Cl of a
difference between two means, first compute the difference between the means:

A=Xx,—Xxp

Next, compute the Cl as follows:

(Pooled) _ (N, —1)SDZ + (Ng — 1)SD3
SD Ny + Ng — 2

S 1 1
(Diffifgnce) - (Pooled) vt

SD N, ' Ng

(Dif?le:écnce) AL (Di;fi:gnce)

In this case, be sure to use df = Ny + Ng - 2

For the special case Na = Ng:

SE of _ 2 5
(Di ff erence) N SEMy + SEMj

Note that the above is simply a triangle rule; it implies that the uncertainty in the sum is more than any
one individual uncertainty, but less than the sum of the two uncertainties.

Paired Studies

The above analysis is applicable when you have two unrelated samples for two different populations. A
much more statistically powerful technique can be used when you’ve performed a paired study. In a
paired study, each value in set A has a corresponding value in set B. Often, paired studies are before-
and-after studies, where measurements are taken on the same subject before and after a treatment. If
offer much statistical power because you are able to factor out much of the biological diversity in the
population.

When working with data from paired studies, you should compute a A for each pair of subjects, then
compute A and its Cl using the techniques for a single distribution.
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Confidence Interval of a Proportion

Many studies measure a proportion of subjects that produce a yes/no outcome (Bernoulli trials). We
may observe that 17 out of 23 animals with a particular knockout die within one week. We can state
that 17/23 = 74% of the animals die. Of course, we wish to compute a Cl for this result.

It should be no surprise that R can compute this Cl for us:
> binomtest (17, 23)
Exact binom al test

data: 17 and 23
nunber of successes = 17, nunber of trials = 23, p-value = 0.03469
alternative hypothesis: true probability of success is not equal to
0.5
95 percent confidence interval
0. 5159480 0.8977139
sanpl e esti mates:
probability of success
0. 7391304

We see (among other things) that the 95% Cl for this proportion is: 0.52 to 0.90.
As you should now expect, the Cl is narrower when we require less certainty in the results...

> binomtest (17,23, conf.level =0.8)

<sni p>
80 percent confidence interval
0. 5869465 0.8568157
...and it also narrows as we collect more data...
> binomtest (170, 230)
<sni p>

95 percent confidence interval
0. 6773469 0. 7946366

Also, notice that the Cl is widest when p is near 0.5:

> binomtest(1, 23)

<sni p>
95 percent confidence interval
0. 001100169 0.219486607

Note that the Cl is not symmetric around the mean. Incidentally, a good way to report this Cl is: “The
proportion observed is 0.04 (95% Cl: <0.01 to 0.22)” Note that we did not round the lower limit to zero.
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We are 100% sure that the true proportion is not zero; if it was, we could not have seen the one
successful trial that we observed.

Interestingly, you can compute a Cl for an event that is never observed...

> binomtest (0, 23)

<sni p>
95 percent confidence interval
0. 0000000 0. 1481851

...even if there is only one trial...

> binomtest (0, 1)
95 percent confidence interval
0. 000 0.975

Of course, in this case the interval is rather wide, and probably doesn’t add too much to our
understanding.

Contingency Tables and Fisher’s Exact Test

The binomial test just described is nice and easy, but our hypothetical experiment is poorly designed. To
say that 74% of our knockout animals died within a week is not informative unless we also have a
control group (maybe there is something very wrong with the food we’ve given all of our animals). If we
did the experiment with controls, we would be in a position to formulate a contingency table:

Outcome X Outcome Y Total
Group |: Experimental 17 (A) 6 (B) 23
Group Il: Control 3(Q) 22 (D) 25
Total: 20 28 48

The relative probability of outcome X with respect to Y is:

17
P _ds_m 074
-"Cc — 3~ =0
Py S 2012

In the epidemiological literature, this ratio of proportions is known as the relative risk; this language
implies that outcome X is worse than outcome Y.

In this case, just by looking at the data it is pretty clear that there is a significant difference in one-week
survival due to the knockout. We would like to quantify what that difference is.

Unfortunately, although relative probability is easy to understand, results such as these are often
expressed in terms of odds, not probabilities. You may recall that odds are defined as:
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p
dds = ——
odds =7

-P
That is, the ‘odds’ is defined as the ratio of the probability of an event happening to the probability of it
not happening. If p=0.75, the odds are 3:1, or just 3. Note that whereas 0<p<1, the range of odds is
much larger: 0<odds<ee.

Just as we computed a relative probability, we can compute the relative odds, or, as the literature calls
it, the odds ratio:

(Odds) A/B

Ratio/ ~ C/D

R will perform this computation for you (with some embellishments), and also compute a Cl of the odds
ratio for you. If the Cl of the odds ratio includes unity, you could not conclude that there is a difference
between the experimental and control groups.

> fisher.test(matrix(c(17, 3,6, 22), ncol =2))
Fi sher's Exact Test for Count Data

data: matrix(c(1l7, 3, 6, 22), ncol = 2)
p-val ue = 2. 200e-05
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval
3.837372 135.998058
sanpl e esti mates:
odds ratio
19. 04224

Note that the odds ratio computed by R is slightly different than what we outlined above. This is
because R includes some correction necessary when any of the counts in the contingency table are less
than around five. For larger numbers, there will be little difference between manual computations and
R’s.

Also note that the confidence interval is not symmetric.

When the values in a contingency table are very large, Fisher’s exact test can be computationally
intensive to compute. The Chi-square test is an alternative that uses some approximations that breaks
down when your tables have small entries. On a modern computer, you can usually just use the Fisher
test. If you are performing many, many tests, you may want to look into alternatives (there are other
issues in multiple hypothesis testing that we will touch on in another session).
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Consider another contingency table:

Outcome X Outcome Y Total

Group |: Experimental 4 (A) 246 (B) 250
Group Il: Control 1(C) 249 (D) 250
Total: 5 495 500

In this case, the experimental group seems to be roughly four times more likely to have outcome X.
However, a Fisher test shows that there may be no difference at all between the groups; it is not
unreasonable that the variation we observed is due to random sampling.

> ct <- matrix(c(4,1, 246,249), ncol =2)
> fisher.test(ct)

Fi sher's Exact Test for Count Data

data: ct
p-val ue = 0. 3725
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval
0. 3960534 199. 9822418

sanpl e esti mates:
odds ratio

4.038627

At this point, you may be wondering why we have elected to work with odds ratios instead of the more
natural relative proportions. Thus far, all of our hypothetical examples have been of what are termed
‘experimental studies’. In these studies, we define two groups, and then perform two different actions
on the members of those groups. The outcomes are results of a Bernoulli trial. For experimental studies,
there really is no good reason to introduce and work with odds instead of probabilities. The reason why
this is done will become apparent in a little while; be patient.

Another kind of study, called a prospective study, is similar. In this kind of study, we define two groups,
as before. However, the two groups are defined by some pre-existing difference. In an epidemiological
study, this may be some prior exposure to a hypothesized risk factor for a disease. For example, if you
hypothesize that people working in the meat-packing industry are at higher risk for contracting vCID,
one group would consist of those that work in the meat-packing industry, and the second would consist
of subjects who do not. In this kind of study, once the subjects are selected and assigned to their groups,
you let nature run its course, and, at the end of the study, observe how many subjects in each group
present ‘successful’ or ‘unsuccessful’ outcomes.

The mathematics of the analysis of a prospective study is similar to that of an experimental study. Again,
there is no particular motivation to use odds in lieu of probabilities in a prospective study. One of the
advantages of a prospective study over an experimental study is that you don’t need to manipulate,
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poke, prod, etc. your subjects; you are simply observing what would normally happen anyway. When
engaging in research on human subjects, this is a big deal.

One of the problems with prospective studies is that, for rare outcomes, they need to be quite large in
order to generate statistically significant results. Look again at the contingency table and the results of
the Fisher test in the last example, now interpreting it as data from a prospective study. Our
hypothetical study involved 500 patients, yet produced a very wide confidence interval: the 95% Cl of
the odds ratio is between 0.4 and 200. An informative exercise is to see how large our study would have
to be to produce a statistically significant result. We can somewhat crudely and artificially vary the size
of the study by multiplying all elements of the Cl by a constant factor:

> (fisher.test(2 * ct))[["conf.int"]]
[1] 0.8014856 39.2777279

<sni p>
> (fisher.test(3 * ct))[["conf.int"]]
[1] 1.085705 22.428339

<sni p>
> (fisher.test(4 * ct))[["conf.int"]]
[1] 1.299123 16.683341

<sni p>
> (fisher.test(8 * ct))[["conf.int"]]
[1] 1.820851 10.192884

<sni p>
> (fisher.test(32 * ct))[["conf.int"]]
[1] 2.726363 6.173279

<sni p>

As you can see, a study that can demonstrate that there is any significance at all between the two
groups would require 1,500 subjects, and to narrow the Cl to something reasonable, we would need
16,000 subjects.

As demonstrated above, R can extract out parts of a complex results. To see the names of the parts that
you can access, use a command like: X <- fisher.test(ct); names(x)

The bottom line here is that prospective studies that investigate rare outcomes usually need to be large,
expensive, and time consuming. Consider that not only do we have to track a large number of patients,
but we have do it for quite a while since we have to wait for the disease manifest itself in the
population.
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The alternative is to do a retrospective study. In this case, we form two groups based on the outcome,
and then look back in time to see if a hypothesized risk factor can be implicated. A contingency table
might look like the following:

Outcome X Outcome Y Total
Group I 40 (A) 25 (B) 65
Group Il 10 (C) 25 (D) 35
Total: 50 50 100

Note that in this experimental design, we select the column totals, whereas in the prospective case we
selected the row totals. Also note that while in our examples, the totals are the same, this does not have
to be the case. Finally, note that a contingency table from a retrospective study gives us no information
about the prevalence or rarity of the outcomes. From this data alone, we don’t know if outcome X or Y is
rare or common. However, as we shall show in a moment, the odds ratio (but not the relative
probability) of the groups computed from a contingency table is correct. Before we demonstrate this,
however, we will introduce one more experimental design...

A cross-sectional study is a design where subjects are chosen without regard to either risk factor or
outcome. You simply randomly select from the population, and tabulate the results in a contingency
table. The analysis of a cross-sectional study is the same as a prospective study. The ultimate cross-
sectional study is to sample the entire population (often this is only possible as a thought experiment).

Now, we can show how odds ratios can be computed from retrospective study data. Begin by
considering a complete cross-sectional study of the whole population:

Outcome X Outcome Y Total

Group I: (A) (B) (A+B)

Group I (Q) (D) (C+D)
Total: (A+C) (B+D) (A+B+C+D)

If you prefer to think in more concrete examples, consider the hypothetical case of an outbreak of a
disease in a small town. The population is 10,000, and half of the population works in the local sausage
plant. There have been 100 cases of the disease reported in the town; 80 of the affected people are
workers in the plant. The contingency tables in the last two numerical examples above are derived from
this hypothetical case.

The relative probability and the odds ratio are computed as follows:

)

cen)

(odds) _ E
ratio

o]

( relative )_
probability) —

o
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Now, in a prospective study, we sample some fraction of the population, f,, in Group I, and some other
fraction, f;, of the population in Group Il. The data in our contingency table is:

Outcome X Outcome Y Total
Group I: fi-A fi-B fi - (A+B)
Group I fi-C fi-D fi - (C+D)
Total: fi-A+f,-C fi-B+f,-D f, - (A+B) +f,, - (C+D)

The table has six variables, and we don’t know any of them! But we do know four of the products.

We can compute the relative probability and the odds ratio:

( relative )_ (fIAflﬁ) _ (AA;B)
probability _(

So far, so good...

Now consider a retrospective study. This time, instead of sampling the groups by row, we are sampling
the groups by column. We are sampling some fraction, fy, of those subjects with outcome X, and
another fraction, fy, of those with outcome Y. Typically (but not necessarily), for rare diseases, fyx is quite
large (we look at a sizable fraction of reported cases), while fy is very, very small (we consider a tiny
sliver of the whole population to be used as a control group). The data we have is

Outcome X Outcome Y Total
Group I: fy - A fy-B fy-A+f,-B
Group I fy - C fy-D fy-C+fy-D
Total: fy- (A+C) fy- (B+D) fy - (A+C) + fy - (B+D)

Incidentally, retrospective studies are often also called case-control studies. The cases are those with a
disease, and the controls are those without it.

Again, we have six variables, of which we know none. But we do know four products. When we blindly
compute a relative probability...

relative =
probability

( incorrect ) (f 1);;:; B)
X Y
(7e5p)

...we see the result is incorrect. However, the odds ratio ‘magically’ works:
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(0dds) - (7%)
ratio/ — (45)

Note that in the middle expression above, the numerator is not the correct odds of outcome X to
outcome Y. However, due to the cancellation of the fractions, the computed ratio is still correct. It is
because we are unable to cancel the fractions in the probability case that we don’t obtain the correct
result there.

Now we are in a position to understand why statisticians like to use odds ratios. It is a consistent
quantity that works for all of the experimental designs considered: experimental, prospective,
retrospective, and cross-sectional. That said, it is possible to compute Cls for relative probabilities in
experimental, prospective and cross-sectional studies; if you are interested in doing so, you may want to
download the ‘epitools’ package for R (see http://www.medepi.com/epitools/Home.html).

Recall that for rare diseases, the odds are approximately the same as the probability. So, for rare
diseases, as a bonus, you can use the odds ratio from a retrospective study as a good approximation for
a relative probability (aka relative risk).

Now let us look at our retrospective study’s contingency table again, and run our Fisher test.

> ct <- matrix(c(40, 10, 25, 25), ncol =2)
> fisher.test(ct)

Fi sher's Exact Test for Count Data

data: ct
p-val ue = 0. 003052
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval
1.523467 10. 866865
sanpl e esti mates:
odds ratio
3.941898

With only one hundred subjects, we have a statistically significant result. We also see that the odds ratio
is close to the relative risk (BTW: in this example, the disease is not all that rare in our hypothetical
population; diseases are often measured in incidents per 100,000 or million). Finally, note that the Cl is
about as wide as a prospective study with 4,000 subjects.

One of the principle advantages of a retrospective study is that they can be performed relatively quickly,
since you don’t need to select subjects and then wait for nature to run its course. For diseases with a
long incubation period, this is a critical concern. They can often be performed by inspection of medical
records (although there are assumptions that come into play).

As you might imagine, you can also design and perform matched pairs case-control studies. In these
studies, the controls are selected to be similar to the cases in variables that are unrelated to the

Copyright 2008 - ] Banfelder, Weill Cornell Medical College Page 10


http://www.medepi.com/epitools/Home.html

Confidence Intervals and Contingency Tables

groupings. In our sausage example, for each patient that has the disease (cases) we would select a
control from our population that has a similar age, weight, household income, kind of pet, etc. Exceptto
state that these studies have additional statistical power over grouped case-control studies, we won't go
into the details of experimental design or analysis of results here (you don’t use contingency tables to
analyze the results, as it masks the extra information inherent in the matched pairs).

Again, always remain aware that relative risk alone tells you nothing of the prevalence of outcomes. If
someone tells you that you are sixteen times as likely to contract vCJD from eating beef if you vacation
in the UK instead of France (vCJD outbreak in the UK was a big deal in the 90s) for a month, you might
consider altering your travel plans. Now consider that the odds of contracting vCJD were estimated at 5
in 10,000,000 for dining in the UK, vs. 3 in 100,000,000 for dining in France. Finally, consider that the
odds of dying in a motor vehicle accident are roughly 1.4 deaths per 100,000,000 miles travelled. This
implies that your round trip taxi ride to Newark Airport from the Medical College is a bit more risky than
your exposure to vCID would have been in the UK. This is not to say that we shouldn’t protect our food
supply (left unchecked, the odds may have gotten a lot worse) or avoid risky behaviors, but it is
important to keep things in perspective.

Further Reading
Harvey Mutolsky’s excellent book, Intuitive Biostatistics, has been the inspiration for much of the

material in this section (http://www.amazon.com/Intuitive-Biostatistics-Harvey-
Motulsky/dp/0195086074/).
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